
R. O. Oladele and H. O. Adedayo / LAUTECH Journal of Engineering And Technology 7(2)2013: 27 – 30

27

LAUTECH JOURNAL OF ENGINEERING AND TECHNOLOGY 7(2)2013: 27-30

ON EMPIRICAL COMPARISON OF CHECKLIST-BASED READING AND
ADHOC READING FOR CODE INSPECTION

R. O. Oladele1 and H. O. Adedayo2

1Department of Computer Science, University of Ilorin, P. M. B. 1515, Ilorin

roladele@yahoo.com
2Department of Computer Science, University of Ibadan, Ibadan

wunmaf@yahoo.com

ABSTRACT

Software inspection is a necessary tool for software quality assurance. To this end a number of inspection

techniques have been proposed in the literature with the ad hoc and Checklist-Based Reading (CBR) being

the most widely used. This paper investigates the performance of ad hoc and CBR techniques in a traditional

paper-based environment. Seventeen undergraduate students of computer science most of whom are in their

final year were used as subjects in the controlled experiment. Results of the experiment indicate that CBR is

significantly superior to ad hoc reading in terms of effectiveness, efficiency, effort, and number of false

positives. On the average, 4 faults were detected in 69 minutes using ad hoc reading while 11 faults were

detected in 42.5 minutes using Checklist-based reading. Also the average number of false positive is about

3.13 in checklist-based approach as against about 6.44 in ad hoc approach.

KEYWORDS: Software Inspection, Quality Assurance, Defects, Reading Techniques, Software Artifact.

DOI: https://doi.org/10.54043/laujet.2013.07.02.05

INTRODUCTION

Increasing software quality is a common objective

for software engineers, however, the goal is not easy

to achieve and there have still been many research

efforts addressing how best to decrease defects and

increase quality in software. Basically, there can be

three main strategies for decreasing defects in

software: defect prevention, defect detection and

correction, and reducing impacts of defects.

Automated analysis, Inspection, and execution

testing are the main methods to detect errors, these
methods have their own characteristics, and based on

the project situation, they can be used selectively or

together.

Software Inspection has become widely used since it

was first introduced by Fagan at IBM. This is due to

its potential benefits for software development,

increased demand for quality certification in

software, (for instance, ISO 9000 compliance

requirements), and the adoption of the Capability

Maturity Model (CMM) as a development

methodology.

Software inspection is a proven method for software

quality assurance. It involves strict and close

examinations carried out on development products to

detect defects, violations of development standards

and other problems. The development products could

be specifications, source code, contracts, test plans

and test cases.

It has been hypothesized that in order to gain

credibility and validity, software inspection

experiments have to be conducted in different

environments, using different people, languages,

cultures, documents, and so on. In other words, the

experiments must be repeated in some other

environments. The motivation for this work therefore

arises from this hypothesis.

Software inspection is as old as Program

Development itself. It was proposed in the 70’s by

IBM, which pioneered its early adoption and later
evolution [4, 5]. It is a means is of detecting faults in

software artifacts such as requirements, design, code,

test cases, etc. In recent time, empirical studies have

shown that defect detection is more an individual

activity than a group activity as assumed by many

inspection methods and refinements. Suffice it to say

that inspection results are completely determined by

the inspectors themselves, their strategies for

understanding the documents being inspected, and

the tools or support available to them during

inspection exercise.

A defect detection or reading (as it is popularly
called) technique is defined as the series of steps or

procedures whose purpose is to guide an inspector in

acquiring a deep understanding of the inspected

software product. The comprehension of inspected

software product is a prerequisite for detecting subtle

and / or complex defects, those often causing the

most problems if detected in later life cycle phases.

mailto:roladele@yahoo.com
mailto:wunmaf@yahoo.com
https://doi.org/10.54043/laujet.2013.07.02.05

R. O. Oladele and H. O. Adedayo / LAUTECH Journal of Engineering And Technology 7(2)2013: 27 – 30

28

According to Porter et al [21], defect detection

techniques range from intuitive, non-systematic

procedures such as ad hoc or checklist-based

techniques, to explicit and highly systematic

procedures such as scenario or correctness proofs. A
reviewer’s individual task may be general, to identify

as many defects as possible, or specific, to focus on a

limited set of issues such as ensuring appropriate use

of hardware interfaces, identifying un-testable

requirements, or checking conformity to coding

standards.

The most frequently used detection methods are ad

hoc and checklist. Ad hoc reading offers very little

reading support at all since a software product is

simply given to inspectors without any direction or

guidelines on how to proceed through it and what to
look for. However, Ad hoc does not mean that

inspection participants do not scrutinize the inspected

product systematically. The word ‘Ad hoc’ only

refers to the fact that no technical support is given to

them for the problem of how to detect defects in a

software artifact. In this case, detection fully depends

on the skill, the knowledge, and the experience of an

inspector. In this case, defect detection depends fully

on the skill, the knowledge, and the experience of an

inspector. Training session in program

comprehension may help inspectors develop some of

these capabilities to alleviate the lack of reading
support.

Checklists offer stronger, boilerplate support in the

form of questions for inspectors while reading the

documents. These questions concern quality aspects

of the document. Checklists are advocated in many

inspection works. For example, Fagan [4, 5],

Dunsmore [6], Sabaliauskaite [7], Humphrey [8], and

Gilb and Grahams’ manuscript [9] to mention a few.

O. S. Akinola and A. O. Osofisan [13] did an

empirical, comparative study on checklist-based and

ad hoc code reading techniques in a distributed
groupware environment. Their findings show that

none of the two reading techniques outperforms each

other in the tool-based environment studied. The

remainder of this paper is organized as follows. In

section 2 we present the experimental setting. In

section 3, experiment results are reported while the

paper is concluded in section 4.

EXPERIMENTAL SETTING

Subjects

Seventeen (17) students of computer science

department were employed in the study. Nine (9) of
the student-reviewers used ad hoc reading technique,

without providing any aid for them in the inspection.

The remaining eight (8) student-reviewers used

checklist-based reading technique.

 Experimental Artifacts

The artifacts used for this experiment was a 99 lines

of java code which accepts data into 3-dimensional

arrays. This small size code was used because the

student involved in the experiment had their first

experience in code inspection with this experiment,

even though they were given some formal training on

the code inspection prior to the exercise. The

experiment was conducted by some students in the

department of computer science, university of Ilorin,
Nigeria. The students were believed to have some

working knowledge of java programming and

software development. The arrays were used as

matrices. Major operations on matrices were

implemented in the program such sum, difference,

product, determinant and transpose. All conditions

for these operations were tested in the program. The

code was developed and tested okay before it was

finally seeded with fifteen (15) errors of which eight

(8) of those errors were logical errors, four (4) were

syntax errors, and three (3) were numerical errors.
The program accepts data into three arrays (say A, B,

C), then perform some operations like addition,

subtraction, multiplication on A and B only, while

other operations like determinant and transpose are

performed on C. these operations report the output

result of the computation if there were no errors, if

there were errors in the form of operational condition

not being fulfilled for any of the operations, the

program reports appropriate error log for that

operation.

Experimental Purpose

The goal of the experiment is to evaluate the
effectiveness and the efficiency of checklist-based

reading (CBR) when it comes to finding faults in a

program code. The evaluation is performed by means

of comparing CBR inspections with Ad hoc reading.

We wanted to determine if there is any significant

difference in the performance of ad hoc reading and

CBR vis-à-vis their effectiveness and efficiency

In particular the experiment investigated if CBR

inspections are cost effective by measuring the time

taken to conduct the inspection, and the number of

faults that the reviewers detected within that time.
Effectiveness of the inspection technique is defined

as fault finding rate and is calculated by dividing the

number of found faults with the total number of

existing faults in the inspected code document. The

efficiency is defined as the number of found faults

per hour. It is worth mentioning that effectiveness

and efficiency of the inspection technique is

measured in a similar way in number of other studies

on software inspections.

EXPERIMENTAL RESULTS

 This section shows the results obtained from the
experiment as well as analysis following the results.

The inspection records provided several data items,

i.e. data on the time when the inspection session

started and finished as well as the time when a

certain fault was found, description of each identified

fault, and fault location in the requirements

specification.

In order to find values for inspection effectiveness

and efficiency for each subject the number of

R. O. Oladele and H. O. Adedayo / LAUTECH Journal of Engineering And Technology 7(2)2013: 27 – 30

29

identified faults and total time of the inspection was

collected. Each reported fault was evaluated so as to

make sure that it was not a false positive. A false

positive is a reported fault that does not qualify as a

fault in relation to the inspected code document.

Table 3.1 shows the results obtained from the

experiment for both Ad hoc and Checklist-based

inspections.

Table 3.1: Experiment Results for Ad hoc Reading and CBR

 AD HOC READING CBR

S/

N

NO

OF

FP

EFFECT

IVENES

S (%)

EFFICIE

NCY (%)

EFFO

RT

(Min)

 NO

OF FP

EFFECT

IVENES

S (%)

EFFICIE

NCY (%)

EFFORT(

Min)

1 5 0.00 0.00 70 4 60.00 19.15 47

2 4 33.33 8.62 58 3 33.33 20.83 24

3 7 13.00 2.94 68 3 53.33 29.63 27

4 10 33.33 7.14 70 1 86.67 38.24 44

5 7 46.67 10.00 70 5 80.00 24.00 50

6 8 26.67 5.71 70 4 93.33 26.92 52

7 4 53.33 8.57 70 3 73.33 73.00 44

8 8 33.33 8.00 75 2 100.00 28.85 52

9 5 13.33 2.86 70

Figure 3.1: A Bar Chart showing the differences in

number of faults detected

Figure 3.2: A bar chart showing the differences

between the total efforts per individual.

CONCLUSION

This work demonstrates the quality of ad hoc and

checklist-based reading techniques vis-à-vis their

defect detection effectiveness, efficiency, effort taken

and number false positives. The results obtained

show that checklist-based reading significantly
outperforms ad hoc reading. However, results of this

study need further experimental validations

especially in industrial settings with professionals

and large real-life code documents.

REFERENCES

 Laitenberger, O., and DeBaud, J.M., (2000): An

Encompassing Life-cycle Centric Survey of

Software Inspection. Journal of Systems and

Software, 50, 5-31
Lanubile and Giuseppe Visaggio (2000): Evaluating

defect Detection Techniques for Software

Requirements Inspections.

Thomas Thelin and Per Runeson’s Experimental

Comparison of Usage- Based and Checklist-

Based Reading book in the department of

Communication Systems,Lund University.

 Michael E. Fagan (1976): Design and Code

Inspections to reduce errors in Program

Development. IBM Systems Journal,

15(3):182-211

Michael E. Fagan (1986): Advances in Software
Inspection, IEEE Trans. On Software

Engineering, SE-12(7):744-751.

Alastair Dunsmore, Marc Roper and Murray Wood

(2003): Practical Code Inspection for Object

Oriented Systems, IEEE Software 20(4), 21 –

29.

Giedre Sabaliauskaite, Fumikazu Matsukawa, Shinji

Kusumoto, Katsuro Inoue (2002): "An

70
58

68 70 70 70 70 75 70

47

24 27

44
50 52

44
52

0

10

20

30

40

50

60

70

80

N
U

M
B

E
R

 O
F

 I
N

D
IV

ID
U

A
L

S 1 2 3 4 5 6 7 8 9

T
O

T
A

L
 E

F
F

O
R

T
S

 U
S

E
D

 B
Y

 I
N

D
IV

ID
U

A
L

S

(%
)

TOTAL EFFORTS OF
INDIVIDUALS IN AD HOC

TOTAL EFFORTS OF
INDIVIDUALS IN CHECKLIST

R. O. Oladele and H. O. Adedayo / LAUTECH Journal of Engineering And Technology 7(2)2013: 27 – 30

30

Experimental Comparison of Checklist-Based

Reading and

Perspective-Based Reading for UML

DesignDocument Inspection," ISESE, p. 148,

2002 International Symposium on Empirical
Software Engineering (ISESE'02), 2002

Watts S. Humphrey (1989): Managing the Software

Process, chapter 10. Addison-Wesley

Publishing Company.

Tom Gilb and Dorothy Graham (1993): Software

Inspection. Addison-Wesley Publishing Co.

 Laitenberger Oliver (2002): A Survey of Software

Inspection technologies, handbook on

Software Engineering and knowledge

Engineering, vol. II, 2002.

 Laitenberge, O., and DeBaud, J.m., (2002): An
Encompassing life cycle centric survey of

Software Inspection. Journal of systems and

software, 50, 5-31.

David L. Parnas and David M. Weiss (1985): Active

design reviews: Principles and practices. In

Proceedings of the 8th International

Conference on Software Engineering, pages

215-222, Aug. 1985.

O. S. Akinola and A. O. Osofisan (2009): An

Empirical Comparative of Checklist-based and

Ad hoc Code Reading Techniques in a

Distributed Groupware Environment.
International Journal of Computer Science

and Information Security, 5(1): 25-35

 Victor Basili, the role of Experimentation in

Software Engineering: past, present, and

future, keynote address, 18th international

conference on software engineering berlin

1996.

Victor Basili, Richard Selby, comparing the

effectiveness of software testing techniques,

IEEE Transactions of software engineering,

vol. 13(12) pp.1278-1296, December 1987.

Richard C. linger, Harlan D. mills, Bernard I. Witt,

structured programming: theory and practice,

Addison Wesley publishing company, 1979.
Adam A. porter, Lawrence G. Votta, and Victor R.

Basili (1995): comparing detection methods

for software requirements inspections: A

replicated experiment. IEEE Trans. On

software engineering, 21 (Harvey 1996): 563-

575.

Paulk, M., Curtis, B., Chrissis, M.B. and Weber, C.

V. (1993): “Capacity Maturation Model for

Software”, Technical Report CMU/SEI-93-

TR-024, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh,
Pennsylvania.

R. O. Oladele, Reading Techniques for Software

Inspection : Review and Analysis. Journal of

Institute of Mathematics and Computer

Sciences (Computer Science Series), India,

2010; 21(2):

Dewayne, E. Perry, Adam A. Porter and Lawrence

G. Votta(2000): Empirical studies of software

engineering: A Roadmap, Proc. of the 22nd

Conference on Software Engineering,

Limerick Ireland, June 2000.

Adam A. Porter, Lawrence G. Votta, and Victor R.
Basili (1995): Comparing detection methods

for software requirements inspections: A

replicated experiment. IEEE Trans. on

Software Engineering, 21(Harvey, 1996):563-

575.

Harlan D. Mills (1972): Evolving and Packaging

Reading Techniques through Experimentation:

IEEE Trans. on Software Engineering.

