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ABSTRACT

Internal Model Control (IMC) applied to the blood glucose regulation process in body of a type 1
diabetic patient in this study. Minimal Model (BMM) adopted as the type 1 diabetic patient was linearized
using Taylor Series expansion to get appropriate transfer function. Insulin infusion rate was used as the
manipulated variable to control the blood glucose concentration while glucose meal was used as disturbance
variable. IMC algorithm was developed to control the process model using the IMC structure along with the
Single Input Single Output (SISO) tool in MATLAB. Single parameter associated with IMC was tuned by
using percentage of settling time (% OLST) for open the loop model representing the patient. The parameter
equivalent to 5% OLST gave the best setting for full-order IMC with closed-loop settling time of 55.913 min,
without violating input constraint. The parameter equivalent to 10% OLST gave the best setting for reduced-
order IMC with closed-loop settling time of 93.788 min. The controllers gave good performance in term of set
point tracking and disturbance attenuation. Comparison of IMC with PID controllers based on Zeigler-
Nichols and Cohen-Coon indicated that IMC outperformed PID controllers.
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Introduction amount of insulin secreted through one of these
Regulating blood glucose in diabetic feedback systems. People with lack of insulin
patients has been one of the most challenging and production are named diabetic patients. They have
socially important control problems in the field of reduced capability of producing insulin through
biomedical systems. Before this time, the pancreas. Diabetes is ranked the 8" leading cause
therapeutic system was based on open-loop of death worldwide with about 1.5 to 5.1 million
strategies with some improvement by feed-forward deaths per year (International Diabetes Federation,
actions and episodic finger-stick measures due to 2013), and thus given rise to the need to devise a
absence of reliable glucose sensors. Advancement more accurate way of controlling it.
in technology in recent time has given birth to According to Sukha and Rubin (2007), the
minimally invasive subcutaneous (sc) Continuous three main types of diabetes are Type 1 diabetes,
Glucose Measurements (CGM) with implantable Type 2 and Gestational diabetes (GDM). Type 1
insulin infusion pumps and this gives way to diabetes also called juvenile-onset diabetes or
complete automated closed-loop control strategies Insulin Dependent Diabetes Mellitus (IDDM) is
with assurance of normoglycemia to help prevent characterized by the insufficient secretion of insulin
diabetic complications. from the [F-cells of pancreas caused by an auto-

The blood glucose control regulation
within 70-100 mg/dL (equivalent to 4-6 mmol/liter)
is always a challenge. Whenever food containing
carbohydrate is consumed, it is broken down by
digestive system to glucose which is subsequently
absorbed into blood stream to increase blood
glucose level and this subsequently timulates
insulin production from pancreas. The human body
has many feedback control loops that regulate body
system to function well. In human body, blood
glucose level is regulated by manipulating the

immune reaction where the body’s defense system
attacks the cells that produce insulin. Type 2
diabetes also called non-insulin dependent diabetes
is characterized by insulin resistance and relative
insulin deficiency, either or both of which may be
present at the time diabetes is diagnosed.
Gestational diabetes (GDM) which is a form of
diabetes consisting of high blood glucose levels
during pregnancy. Diabetes results in prolonged
elevated blood glucose concentration and a clinical
condition known as hyperglycemia (defined as
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arterial glucose concentration > 120 mg/dl which is
equivalent to 6.7mmol/liter) (Sukha and Rubin,
2007).

Different control systems have been
developed in the past years to meet the need of
blood glucose control such as therapeutic system
based on open-loop strategies with some
improvement by feed-forward actions and episodic
finger-stick measures due to absence of reliable
glucose sensors. In the recent times, model based
and model free control algorithms methods have
been tried to achieve different designs with
implementations transitioning from in silico
simulations to clinical evaluation stage with
practical applications in mind (Clarke and Foster,
2012). Although, reduction in patient and health
personnel intervention have been achieved through

these techniques, there is a need to eliminate user
intervention completely and this has built up
tremendous motivation for the development of
closed loop insulin delivery systems.

The ultimate purpose of developing better
glucose  monitoring and  insulin  delivery
technologies is to combine these two processes by
way of an algorithm, into an automatic closed-loop
system (Klonoff, 2007). This closed loop sytem is
currently reffered to as artificial pancreas and it
comprises of a glucose monitoring sensor, an
insulin pump, and a control algorithm to regulate
the pump to deliver the insulin in order to maintain
normoglycemia  in  presence  of  sensor
measurements. These three components and how
they are linked is shown in the schematic diagram
in Figure 1 below.
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Fig. 1: Schematic Diagram of an artificial pancreas (Bequette et. al., 2002)

The main objective of this work is to design IMC
control algorithm for blood glucose regulation in
glycemic variability situation by using the Bergman
Minimal Model (BMM). The model is suitable to
test the effects of insulin infusion and glucose
(meal) inputs on the blood glucose concentration.
Parker et al., (1999) developed a model-based
predictive  control  algorithm to  maintain
normoglycemic in the Type I diabetic patient using
a closed-loop insulin infusion pump. A
fundamental model of the diabetic patient was
constructed utilizing compartmental modeling
techniques. A linear model predictive controller
(MPC) was developed and controller performance
for unmeasured disturbance rejection (50 g oral
glucose tolerance test) was examined. Under noise-
free conditions, the model based predictive
controller using state estimation was seen to
outperform an internal model controller from
literature. These results demonstrate the potential
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use of predictive algorithms for blood glucose
control in an insulin infusion pump. MPC is
sufficient for controlling blood glucose, but results
in glucose concentrations near the output lower
bound. The digital nature of the control algorithm
allows potential implementation onto chip
technology when sensors can guarantee long in
vivo lifetimes.

Chase, et al, (2002) developed a control
method focusing on the rate of change of blood
glucose level to utilize emerging technologies in
blood glucose biosensors. The controller developed
was found to provide tighter, more optimal control
of blood glucose levels, while robustly handling
variation in patient response and sampling rate.
Particular emphasis was placed on the controller
simplicity and robustness necessary for medical
devices and implants. A PD controller with a
heavily weighted derivative term was also found to
outperform the more proportional-weighted
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controllers in oral glucose tolerance testing.
Simulation results showed reductions of over 50%
in the magnitude and duration of blood glucose
excursions from basal levels that were slightly
better than normal non-diabetic response modeled.
Comparison with normal response indicated that
the physiological control system has some measure
of both proportional and derivative control as the
basis of glucose regulation

Van Herp et al.(2006) presented a modified
minimal model to describe the glucose dynamics
and the insulin kinetics of ICU patients.
Simulations of their study showed that the modified
model (ICU-MM) exhibits a similar glycemic
behavior as that of the original minimal model
(MM) and clinically more realistic insulin kinetics.
Therefore, it is potentially more suitable for
glycemia model predictive control (MPC). The
modified model was also estimated on a real-life
surgical ICU dataset. Although only two input
variables were taken into account, the simulated
glucose trajectories keep track of the general
glycemia behaviour..

Sh.Yasini and Naghibi-Sistani,  (2008)
proposed a closed-loop control system based on
fuzzy logic control for type I diabetic patients. A
controller was designed using a Mamdani-type
fuzzy scheme in order to incorporate knowledge
about patient treatment. The controller can
successfully tolerate dynamic uncertainty in patient
model while rapidly rejecting meal disturbances
and tracking the constant glucose reference.
Robustness was tested over a group of three
patients  with model parameters varying
considerably from the averaged model. They
showed that the fuzzy logic framework has the
potential to synthesize expert knowledge to treat
diseases. Their simulation results proved that the
fuzzy control method has preference over other
conventional techniques in blood glucose control.

Ibbini, (2008) demonstrated the superiority of
using fuzzy logic control strategies for the case of
regulating the normoglycemic average for type-I
diabetic patients. The stability of the resulting
system often encountered practical situations of
severe initial conditions of hyperglycemic and
sudden glucose meal intake was also demonstrated
with computer simulations. The superiority of the
FLC and PI-FLC controllers over other
conventional (PID and PI) or optimal (LQR)
techniques was also demonstrated and compared
with computer simulations.

Sh  Yasini and Naghibi-Sistani (2009)
developed a consistent, robust controller for safe,
predictable regulation of blood glucose levels in
diabetic patients. The closed-loop control scheme
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incorporates expert knowledge about treatment by
using Q-learning algorithm to maintain the
normoglycemic average of 80 mg/dl and the
normal condition for free plasma insulin
concentration in severe initial state. Controller
performance was assessed in terms of its ability to
reject the effect of meal disturbance and to
overcome the variability in the glucose-insulin
dynamics from patient to patient. Computer
simulations were used to evaluate the effectiveness
of the proposed technique. The proposed controller
was seen to successfully tolerate patient variability
and dynamic uncertainty while rapidly rejecting
meal disturbances and tracking the constant glucose
reference.

Kamath (2014) derived a control strategy for
blood glucose regulation. Controller performance
was assessed in terms of its ability to reject the
effect of meal disturbance and to overcome the
variability in the glucose-insulin dynamics from
patient to patient. Computer simulations were used
to evaluate the effectiveness of the proposed
technique and to show its superiority in controlling
hyperglycemia over other existing algorithms. The
performance and robustness characteristics of
different PID controllers were obtained using four
tuning methods. The performances of Hoo
controller was compared with the performances of
other two controllers such as PID and IMC
controller. Shen and DMC-based tuning methods
outperformed the other two tuning methods i.e.
Cohen-Coon and [AE minimization methods and
PID controller tuned by the Shen method was able
to maintain the glucose concentration above the
dangerous hypoglycemic range (< 60 mg/dL).

Model Simulation

The Bergman Minimal Model as
employed in this paper is a three compartment
model with one compartment each assigned to
glucose and to insulin concentrations in the blood,
and the third to the non-observable auxiliary

variable X(t), which creates the delay in the

action of insulin on glucose (Bergman, 2005). The
mathematical equations for the model includes:

dG [
—— = —p, G — X(G+G,) + n
de * b A

dx .
ar = —pX + sl (2

al i

o= i+ L) o €)

The parameter definitions and their values used to
simulate the model are presented in Table 1

(Bequette, 2002 and Sriram et al., 2010).
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Table 1 Parameters used in simulations

Variable Name

Value

Gy Basal Plasma Glucose 4.5mmol/liter

Is Basal Plasma Insulin 4.5mU/liter

Vi Insulin Distribution Volume 12liter

pi Insulin Dependent constant 1 min™

P2 Delay in Insulin Action 0.025 min™

P3 the insulin-dependent increase in glucose uptake ability 0.0013 (mU.min/L) "'
N Fractional dissapearance rate of insulin 5/54 min™*

G Blood Glucose Concentration 4.5mmol/liter

1 Insulin Concentration 10.5mU/liter

X Insulin Concentration (Remote Compartment) the insulin’s 0.005461 min™

seffect on the net glucose disappearance

The set of non-linear equations were solved before
using the model for controller design. Simulink
Software in MATLAB was used to solve the
model. The Simulink provides a graphical user
interface (GUI) for building models as block

diagram and it includes a comprehensive block
library of sources, sinks, connectors along with
linear and non-linear components. Simulation of
then Bergman Minimal Model is shown in Figure
2.
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Figure 2 Simulink Model of the Blood Glucose Regulation process

The meal disturbance was represented by
a pulse input with amplitude of 0.18. The
linearization points were also specified with Gmeal
and U as inputs and G(t) as the output.

Model Linearization

The control and estimation tools manager
in MATLAB SIMULINK gave the following state
space representation of the model:

—1.0055 —4.5000 0 ]
A= N —0.0250 nani3
Q [1] —0.0926
0 0.4630
B = 0 0 ]
0.0833 0
C=[1 0 0] D=[0 o]

The transfer function that shows relationship
between controlled variable (blood glucose
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concentration, G) and manipulated input (insulin
infusion rate, u) was derived according to

g, = C(sI— 4B 4)
Evaluation of Eq. 4 leads to the following

_ —3.7810 5
Gp = (40,02 41)(10.854 1) 0.59452 +1) G

The transfers function from the disturbance input
(Glucose meal, Gy,,) otherwise known as the

disturbance transfer function was derived as:
2.3340

9a = Tio0 ©)
IMC Design Procedure

The IMC design procedure is a design process
to provide a suitable tradeoff between performance
and robustness. It refers to systematic procedure for
control system design based on the Q-
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parameterization concept that is the basis for any
modern control techniques. Aside from controller
design, IMC has been found to be helpful in
assessing the fundamental requirements associated
with feedback control such as determining the
effect of non-minimum phase elements (delays and
Right Hand Plane (RHP) zeros) on achievable
control performance (Rivera and Flores, 2004).
Two types of IMC design are common. In the first
type, the plant is approximated as a first-order
model with a time delay and PID parameters is

computed using Skogestad design rules (Skogestad,
2003). In the second type, a full-order feedback
controller is generated using Q-parameterization
concept to guarantee closed-loop stability when
there is no model error and integrator is included to
guarantees zero steady-state offset for plants
without a free differentiator.

The IMC design structure based on Q-
parameterization concept used for the feedback
control is shown in Fig. 3.
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Fig. 3:

The transfer function and variables represented

in Fig. 3 are:

d(s) = disturbance; d(s) = estimated
disturbance; g(s) = plant;

§[_, (=)= process model; Z.(s) = internal

model controller; r(s) = set point
T(s) = modified setpoint (corrects for model
error and disturbances)
u(s) = manipulated input (controller output);
y(s) = measured process output
¥( =)= model output.
The process model obtained after linearization is

given as:
—0.0028

7
g% +1.1238 +0.1205 & + Q002327 ™
The idealized IMC controller was formed using

ql=) = g_;l(.':j

q(s) = g, ' (s) =

g8 +1.123&" +0.1205 & + 0002327
—0L008E

1
Az #1007
make the controller proper (such that the order of
the denominator of the controller transfer function
will be at least as great as the order of its

A filter of the forml,—was cascaded in order to

IMC Design Structure
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numerator). To avoid controller with high order we
choose n to be 3. Thus, the feedback controller is
given as

0D =0 s O

The controller has one parameter setting, A which
can be adjusted to vary the speed of response. The
parameter, 4 was adjusted by using percentage of

open-loop settling time (% OLST) of the patient
model represented by transfer function in Eq. 5.

Proportional Integral Derivative Controller
Tunings

The performance of IMC scheme was compared
with conventional PID controllers. The PID
controllers used is of the form (Bequette, 2002):
C(.‘S‘j =K, I:r_g.rpn+r;s+l:| |: 1 :| (10)

T[S Olrtp s+l

where, Kc= Controller gain, Tp=derivative time
and T;=integral time

The value of the controller parameters were
obtained by using Ziegler-Nichols open-loop
tuning parameter (Eqn. 11) and Cohen-Coon tuning
parameters (Eqn. 12) from model parameters
(Bequette, 2002).

1.2ty
[
llﬁ"l:

ey 1 T 2tay =05t (1)
¥
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5450
T, |4 tg R
K =— —£& = L4
E kptg |3 4Ty T Sty Big |
L rF‘
&tg
Tp = =g (12)
b 11+T—'1

The third order transfer function in Eqn. 5 was
reduced to first order transfer function with delay
given by Eqn. (13) using half-rule technique
proposed by (Skogestad, 2003) in order to evaluate
the settings represented by Eqn. 11 and Eqn. 12 to
give
K:a_rd
p = (r=z+1) (13)

Results and Discussion

The blood glucose regulation process was
simulated in MATLAB Simulink. The equations
for the internal model control algorithm was
written in MATLAB and executed on a PC with
2.1GHz and 4GB RAM. The turning parameters
were set using percentage of open-loop settling
time (% OLST). The full-order feedback
controllers obtained for 2.5%, 5%, 10%, 15% and
20% of the open-loop settling time are presented in
Table 2. The table also contains corresponding
reduced order controllers obtained after the full-

order controllers were subjected to balanced
residualization ~ technique  implemented in
MATLAB software. Order reduction on the full-
order controllers was carried out in order to
simplify the controllers because practical
implementation of high order control laws is
prohibitive. The full-order was successfully
reduced to second order. Further reduction to first
order turned the closed loop system to become
unstable.

Servo responses for full-order and reduced
order controllers are presented in Fig. 4 and Fig. 5,
respectively. Increase in the %OLST makes the
response to be more sluggish for both full-order
and reduced-order controllers. Setting with 2.5%
and 5%OLST are able to track the set point of
80mg/dcliter blood glucose concentration within
100 min. For instance, the settling time with full-
order controllers for 2.5% and 5% OLST setting
are 17.887 min and 55.913 min, respectively while
the settling time with reduced-order controllers are
28.474 min and 80.891min, respectively. Settling
times for all the settings are presented in Table 3.

Table 2: Full-order and reduced —order IMC controllers based on percentage open-loop settling time (%OLST

% Full-order feedback controllers Reduced order controllers
OLST
25% | —1482s"3 — 166552 — 0.1787 § — 0.00345 —2.367 52 — 0.2571s — 0.00497

"3 + 0705552 + 016595 — 8.348e¢ — 018

s"2 + 02395 — 1.327e — 017

5% —0.1853 53 — 0.2081 5"2 — 0.02234 5 — 0.0001313

53 + 0352852 + 0.041485 — 1.043e—018

—0.0305: s~2 — 0.69365 — 0.0159
M2 | 1520 = 3.395¢ 016

10% —0.02316 53 — 0.02601s"2 — 0.002792 s — 5.391e — 005

—0.00557 s*2 — 0.03092s — 0.0007393

"3 4+ 017642 + 001037 5 — 13042 — 019

s"2 + 014225 — 1.974¢ — 018

15% —0.00£863 3 — 0007707 242 — 00008273 ¢ — L3972 — 005

3 4+ 0.1176 52 4+ 00016095 + 1.71e— 020

0.001333 52 — 0.0091485 — 00002162
522 + 0.0624 5 + 433 —019

20% —0.002595 s*3 — 0.00325Z s*2 — 0.000349 5 — 6,739 — 006

s*3 + 008819 =2 + 0.002593r — 163 — D20

0.005773 s"2 — 0.0043345s — 9.76e — 005
s"2 + 0037555 — 2.443e — 019

132
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Figure 4: Closed-loop response with reduced-order controllers at different parameter settings for set point of 10

Table 3: Performance metrics for Full-order IMC (FOIMC) and reduced-orders IMC (ROIMC) for set point

tracking
% OLST Settling Settling Range of insulin Range of insulin
time(min) for Time(min) infusion rate (mU/min) infusion rate
FOIMC for ROIMC for FOIMC (mU/min) for ROIMC
2.5% 17.887 28.474 (-87.096, 19.619) (-148.994, 16.478)
5% 55913 80.891 (3.699, 14.019) (-12.418, 14.513)
10% 93.486 93.788 (13.598, 15.049) (13.635, 16.000)
15% 98.112 98.175 (13.997, 16.190) (13.986, 16.763)
20% 99.115 99.103 (14.285, 16.467) (14457, 17.432)

Comparative study of the settling times for
all the settings indicate that closed-loop systems
with  full-order controllers are faster than the
corresponding closed- loop responses with
reduced-order controllers except to 20% OLST
setting in which response with reduced-order
controller is slightly faster than the response with
full-order controller. It seems that 2.5% (OLST)
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setting is the best in term of speed of response for
closed-loop system with both full-order and
reduced-order controllers however, input (insulin
infusion rate which must not be negative)
constraint must be satisfied before concluding.
Table 3 which also show the ranges of insulin
infusion rate for the closed loop system for the two
controller types indicates that 5% -20% OLST
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settings satisfy the input constraint for full-order
controller while 10%-20% OLST settings satisfy
the constraint for reduced-order controller. To this
end, the best choice is the full-order controller
resulting from 5% OLST setting in term the speed
of response. However, if ease of implementation is
given priority, then reduced-order emanating from
10% OLST setting may be considered.

The disturbance attenuating capability of
both full-order controllers and reduced-order
controllers emanating from the considered % OLTS
settings was considered in the design. Fig. 4 and
Fig. 5 show the close-loop responses with Full-
order controllers and reduced-order controllers,
respectively disturbance attenuation. Each of these
system was subjected a pulse meal consumption of
50 g glucose at t=0 min under closed-loop. In case
of full-order controllers, the highest peak blood
glucose concentration ( Fig. 4) is found to be 7.45
mg/dclilter which is still within normoglycemic
range (70-100 mg/dl) and this occurs for the
controller obtained from 2.5% OLST setting. Fig.4
indicates that, the higher the % OLST setting used
in controller designed the peak blood sugar level
and the speed of response. The ranges of % OLST
settings that satisfy the input constraint (i.e, non-
negative insulin delivery rate) are 10%- 20% OLST
(Table 4). The same pattern observed in closed-
loop response with full-order controllers was
observed for the case of closed-loop response with
reduced-order controllers with a slight difference in
term settling times (see Table 4).
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74 ¥ —%— 5% OLST

3 —e— 10% OLST
735 \ ~—+— 15% OLST
—o— 20% OLST
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Time (min)

Figure 5: Closed-loop response for disturbance
rejection with full-order controllers for different
settings
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Table 4: Performance metrics for Full-order IMC (FOIMC) and Reduced-orders IMC (ROIMC) for disturbance

rejection
% OLST Settling Settling Range of insulin Range of insulin
time(min) for | Time(min) for infusion rate infusion rate (mU/min)
FOIMC ROIMC (mU/min) for FOIMC for ROIMC
2.5% 36.763 39.272 (-87.096,32.721) (-148.994, 36.333)
5% 74.424 76.022 (3.699, 17.854) (-12.418,17.179)
10% 99.001 98.764 (15.049, 16.721) (13.635, 16.714)
15% 99.899 99.958 (16.188, 16.660) (13.986, 16.763)
20% 98.681 98.819 (16.428, 16.612) (14.298, 17.074)

Servo closed-loop responses for IMC, PID
controllers based on Zeigler-Nichols setting and
Cohen-Coon setting are shown in Fig. 7 and the
corresponding performance metrics are shown in
Table 5. Both PID controllers have aggressive
responses with faster rising and with overshoot.
This means both will have damping factor less than
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unity and implication of the overshoot is that there
is  possibility of patient to experience
hyperglycemic condition if such control scheme is
used in artificial pancreas. Similarly, both PID
controllers give negative insulin infusion rate
which is not realistic and poor performances are
also indicated with larger settling time.
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Figure 7: Closed-loop response for set point of 10 step change under different control schemes

Table 4: Performance metrics for different control schemes for setp point tracking.

Performance IMC PID_ZN controller | PID_CC controller
Overshoot (%) 0 2.533 2.362
Settling Time(min) 559131 81.738 65.481
Range of insulin infusion rate | (3.699, 14.019) (-91.897, 109.14) (-91.27, 14.671)
(mU/min)
Conclusions Blood  Glucose  Derivative. Seventh
IMC was successfully applied to a blood glucose International ~ Conference on  Control,

regulation in a patient with diabetic type-1.
Parameter tuning for the IMC was based on
percentage settling time (% OLST) of the open
loop model representing the diabetic patient. It was
found that the larger the % OLST the more
sluggish is the response. The parameter setting that
gave reasonable is response 5% OLST without
violating input constraint (no negative insulin
infusion rate). The reduced-order controller gave
slower response when compared full-order
controller while PID controllers from Zeigler-
Nichols and Cohen-Coon gave aggressive response
with overshoot and both violate input constraint.
We therefore conclude that IMC scheme
outperform PID schemes based on conventional
tuning parameters.
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