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ABSTRACT  

This study presents exergy parametric analysis and prediction of turmeric rhizome drying using first and 

second law of thermodynamics as well as soft-computing techniques. The drying experiments were conducted 

at inlet drying temperature: (40-650C), air velocity (1.5-3m/s), drying time: (30-240 minutes) and sample 

thickness: (2-5mm). The Neuro-Fuzzy Exhaustive Search (NFES) parametric analysis results revealed that 

drying time (RMSE=0.0031), temperature (RMSE=0.096), temperature (RMSE=0.046) and sample thickness 

(RMSE=0.748) are the most single relevant parameters for Exergy Loss (EL), Exergy Efficiency (EE), 

Exergetic Improvement Potential (EIP) and Sustainability Index (SI) respectively. Whereas temperature-time 

(RMSE=0.0031), temperature-velocity (RMSE=0.0945), temperature-time (RMSE=0.046) and time-thickness 

(RMSE=0.7534) are the most important two-input combinations for EL, EE, EIP and SI correspondingly. 

NFES also revealed that time-temperature-velocity (RMSE=0.004), temperature-velocity-thickness 

(RMSE=0.082), time-temperature-velocity (RMSE=0.0436) and time-temperature-thickness (RMSE=0.758) 

are the three-input significant combination for EL, EE, EIP and SI respectively. The ANN results show that 

two-input combination architectures gave the highest R2 with minimum RMSE for the exergy-sustainability 

indicators. Therefore, this study shows that NFES and ANN are reliable tools for the analyses of turmeric 

rhizome drying thermo-sustainability indicators. 

Keywords: exergy-sustainability, exergy efficiency, exhaustive-search and drying. 

1 INTRODUCTION  

Thermodynamic analysis is a significant 

engineering tool for evaluating the energy efficiency 

of thermal operations in the processing industry. It 

is used for the design, assessment and optimization 

of thermal processes or systems (Castro et al, 2018). 

Energy analysis of thermal engineering system 

facilitates the understanding of the dynamics of 

energy conversion and its utilization. The 

information obtained from energy analysis is limited 

to conservation of energy which implies that energy 

is indestructible by the process. However, upon 

transformation of energy form to another, part of its 

initial quality is irreversibly lost, leading to a 

degraded quality (Zisopoulous et al, 2017). Thus, 

only energy analysis is not adequate for the 

assessment of thermal engineering system, as the 

quality of energy changes during the operation of 

thermal systems. 

The paradigm of energy quality has been 

described as the possibility of energy exchange 

between a donating and an accepting stream 

(Baccarelli et al, 2016). Dincer and Acar 2015 

defined the possibility as the “maximum work 

potential of a material or a form of energy in relation 

to its environment,”  This thermodynamic property 

generally assesses energy quality of thermal 
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processes and also determines the useful work 

potential or available energy at some specific states 

(Castro et al, 2018; Aviara et al, 2014).  Exergy 

similarly estimates the maximum work that can be 

obtained from a stream of matter or energy as it 

comes to equilibrium with an ambient environment. 

Analysis of exergy is based on the second law of 

thermodynamics which states that noticeable 

changes are irreversible and irreversibility of the 

thermal process is detrimental to its efficiency due 

to entropy generation during the process. Therefore, 

exergy is consumed or destroyed due to process 

irreversibility and entropy is always generated in 

real processes such as drying operation. 

  The drying process is used to decrease the 

moisture content of the products to a particular value 

in order to improve the shelf life; and also provides 

safe storage of agricultural produce. Furthermore, 

dehydration preserves the quality of appearance and 

nutritional value during postharvest life, as well as 

reduces the cost of packing. Drying operation is a 

solid-liquid separation process which involves 

transport of heat and mass. The solid is exposed to 

thermal drying; two processes occur concurrently; 

firstly, transfer of heat energy from the surrounding 

to evaporate the moisture from the surface and 

removal of internal moisture to the surface of the 

solid (Castro et al, 2018; Aviara et al, 2014; Beigi et 

al, 2017). Owing to the amount of heat required to 

vaporize moisture from the food matrix, the drying 

process thus requires a high energy input (Baccarelli 

et al, 2016). According to Aviara et al, 2014, ten per 

cent of the overall energy consumption in food 

process industries is connected to the drying of food; 

therefore, food drying is one of the most thermal and 

energy-consuming operations in food production.  

Quite a lot of investigations have been 

conducted on exergy analyses of food drying in 

recent times (Beigi et al 2017; Aghbashlo 2016; 

Chen et al, 2017; Tiwari et al, 2016; Karim and 

Hawlader 2005; Kumar et al, 2017).  Castro et al, 

2018 investigated energy and exergy analyses of the 

convective drying of onion.  Samimi et al, 2018 

reported the study of energy and exergy of tomatoes 

slices in a mixed mode natural convection solar 

dryer. Darvishi et al, 2016 conducted the energetic 

and exergetic performance analysis of kiwi slices. 

Azadbakht et al, 2017 also performed energy and 

exergy analyses during eggplant drying in a 

fluidized bed dryer. Yogendrasasidhar and Setty  

(2018) researched on drying kinetics, exergy and 

energy analyses of Kodo millet grains and fenugreek 

seeds using wall heated fluidized bed dryer. 

Karthikeyan and Murugavelh, 2018 investigated the 

effect of dryer exergy efficiency on only drying time 

during thin layer drying of turmeric (Curcuma 

longa) in a mixed mode forced convection solar 

tunnel dryer. Beigi et al, 2017 studied exergetic 

analysis of deep-bed drying of rough rice in a 

convective dryer.  

Soft-computing techniques such as 

Adaptive neuro-fuzzy inference system, artificial 

neural network, genetic programming have been 

used in solid-liquid separation processes and other 

related engineering endeavours (Oke et al 2018a; 

Oke et al 2018b; Prakash et al 2017; Mashaly and 

Alazba, 2017; Al-Mahasneh et al, 2016; Bhattarai et 

al, 2017;Golafshani and Behnood, 2018; Prakash 

and Kumar, 2014; Rego et al, 2018). Most of the 

above said studies explored the Artificial Neural 

network (ANN), Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and Multi-Linear Regression 

techniques for variable combinations selection and 

sensitivity analyses for the prediction of the process 

systems. The result showed that the methods are 

reliable tools for selecting the best input variable 

combination for the process. Mohammadi et al, 2016 

used the neuro-fuzzy technique to identify the most 

and least significant variables, among five input 
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variables, for dew point temperature estimation. 

Determination of the most and least relevant 

parameters of weather input parameters on 

evapotranspiration was also investigated by ANFIS 

exhaustive search algorithm (Petkovic et al, 2015). 

The results revealed the appropriate selection of 

input variables was successfully investigated by 

soft-computing technique, and the selection also has 

a notable effect on the prediction.  

However, information about the selection 

of drying input variables for the prediction of 

thermo-sustainability indicators of turmeric rhizome 

drying in a tray dryer is rarely found in the literature. 

Fundamentally, the adequate identification of more 

significant input drying variables for thermo-

sustainability indicators prediction would be of great 

scientific importance and, moreover provide more 

precision and less complexity predictive model.  

Mohammadi et al, 2016 reported that the inclusion 

of many input variables could cause drawbacks and 

difficulties in the model interpretation and 

elucidation. These factors may also consequently 

deteriorate the generalization and predictability 

degree capacity of the model. Owing to the thorough 

literature search, no detailed study found on the 

investigation of the selection and prediction of 

pertinent drying input variables that influence 

thermo-sustainability indicators of turmeric rhizome 

drying. The uniqueness of this study is to select the 

most relevant drying variables for exergy loss, 

exergy improvement potential, exergy efficiency 

and sustainability index for prediction, which has 

not been conducted so far.  

2 Materials and Method 

2.1 Sample Preparation  

The fresh turmeric (Curcuma longa) rhizome 

samples were obtained from National Root Crops 

Research Institute Umudike, South-East of Nigeria. 

The rhizomes were washed to remove soil and dirt 

adhered to it. The surface water was removed by 

wiping with tissue paper. The selected samples were 

carefully dimensioned using Vernier callipers into 

desired thickness for drying experiment.  

2.2 Drying Procedure 

Convective hot air laboratory tray dryer (Heratherm 

Oven CP 210997), as schematically shown in Figure 

1, was used for drying the rhizome. The dimensions 

of the drying compartment were 360 × 620 × 460 

mm. Heating elements were fitted at the interior 

back of the dryer. The temperature inside the dryer 

was controlled with a thermostatic temperature 

controller imbedded into the tray dryer. Air was 

circulated inside the dryer with a fan fixed at the 

back of the dryer. The pattern of air flow was cross-

circulated type as depicted in Figure. 1. The air 

velocity inside the chamber was measured with a 

digital anemometer (Model PM6252A) with 

accuracy of ±0.1 and was varied from 1.5m/s to 

3m/s. The dryer was allowed to preheat to the 

desired temperature, and 27g of the cut rhizome of 

Curcuma longa were spread onto the trays in single 

layer for a specified time. The ambient, inlet and 

outlet temperature and relative humidity of the dry 

air were measured with a squared multi-

thermometer (Model TA298) with an accuracy of 

±0.10C. The components of diagrammatic dryer in 

figure 1 are: (1) Outdoor door (2) Door latch cut out 

(3) Door latch and handle (4) Door hinge lower (5) 

Levelling foot (6) Nameplate (7) Air battle top piece 

(8) Support rail for wire mesh shelf (9) Shelf support 

(10) Fan cover, integrated into air baffle (11) Door 

hook catch (12) Air baffle (13) Door seal (14) 

Stacking pad (15) Spring for air baffle (16) 

Temperature sensor (17) Exhaust air tube.
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Figure 1: Schematic diagram of the dryer 

2.3 Thermodynamic Analyses 

2.3.1 Energy Analysis  

The dryer energy utilization was calculated using the 

conservation energy law of thermodynamics (Aviara 

et al, 2014):  

Energy Utilization (EU) = ���(ℎ��� − ℎ���)                                            

1 

EU = Energy Utilization (kJ/s); mda = mass flow of 

dry air (kg/s), hdai = inlet dry air enthalpy (kJ/kg) and 

hdao = outlet dry air enthalpy (kJ/kg). 

 The air mass flow rate was obtained using Equation 

(2):   

 ��� = ��	�����                                                                                        

2                     

where, ρa is air density; va is air speed inside dryer 

and ���	is the cross section that air crosses it. 

The ratio of energy utilization to the provided energy 

in the dryer chamber is defined as the energy 

utilization ratio[28] and is calculated using equation 

(3): 

EUR = 
� ��(���������)

� ��(��������)
                                                                               

3 

Values of the inlet and outlet air enthalpy are equal 

to the sum of dry air enthalpy and water vapor 

enthalpy. Therefore, equation (4) is frequently used 

to determine air enthalpy (Aviara et al, 2014; 

Azadbakht et al, 2017): 

ℎ�� = ����� + ℎ���                                                                              

(4) 

Where hda, is the inlet or outlet dry air enthalpy 

(kJ/kg); Cpda = specific heat of inlet or outlet dry air 

(kJ/kg0C); T = inlet or outlet air temperature (0C); hfg 

= the latent heat of vaporization of water (kJ/kg) and 

w = the humidity ratio of air (kg water =/kg dry air). 

Air specific heat is calculated from equation (5).  

���� = 0.0001� + 0.967                                                                         

5 

Humidity ratio was calculated[2, 29] using equation 

(6): 
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� = 0.622
��

����
                                                                                         

6  

Where w = humidity ratio; P = air pressure (kPa) and 

Pv = vapor pressure (kPa).  

 

2.3.2 Exergy analysis  

Exergy analysis of the drying process was carried 

out on the basis of the second law of 

thermodynamics. For this purpose, the mathematical 

formulations used for the exergy balance [5] are as 

shown in Equation (7):  

�� = 	���� �(� − ��)− �� ln �
�

��
��                                                                                          

7 

Air specific heat ���� in equation (5) substituted and 

equation 7 becomes:        

�� = 	0.0001� + 0.967�(� − ��)− �� ln �
�

��
��                                                             

8 

Where Ex is the exergy of air (kJ/s), T = the 

temperature of inlet/outlet air (0C) and T∞ = the 

ambient temperature (0C). Equation 8 was used to 

calculate the exergy inflow and outflow at the inlet 

and outlet temperatures of the drying chamber, 

respectively. 

 

2.3.2.1 Calculation of Exergy Loss (EL) 

Exergy loss was determined by equation (9):  

Exloss = Exinflow – Exoutflow                                                                         

(9) 

Where E1 is the exergy loss   

Ein = exergy inflow 

 

2.3.2.2 Calculation of Exergy Efficiency (EE) 

Exergetic efficiency has been defined as the ratio of 

exergy outflow in the drying of the product to exergy 

of the drying air supplied to the system (Castro et al, 

2018). The exergy efficiency was calculated using 

the expression below- (Castro et al, 2018; Aviara et 

al, 2014) : 

����� = 	
������	�������������	����

������	������
                                                               

(10) 

Or ����� = 	1−
������	����

������	������
                                                                      

(11) 

Equation (11) can be stated as  

��� = 1−
���

����
                                                                                              

(12) 

 ŋEX = exergy efficiency.  

 2.3.2.3 Calculation of Exergy Improvement 

Potential (EIP) 

 The exergetic improvement potential was 

calculated using the expression below: 

EIP = (1 – Exeff) (Exinflow – Exoutflow)                                                           

(13) 

Where EIP = Exergetic improvement potential 

2.3.2.3 Calculation of Exergy Sustainable Index 

(SI) 

The sustainability index of the system was 

calculated (Castro et al, 2014) : 

S.I = 
�

�������
    

              (14) 

2.4 Soft-Computing Modelling Technique 

2.4.1 Neuro-fuzzy Exhaustive Search Parametric 

Technique 

 ANFIS exhaustive search programming codes were 

written in MATLAB 8.4 (R2014b) environment and 

implemented for the selection of the set of one, two 

and three variable inputs combination that has the 

most and least influence on the EL, EE, EIP and SI. 

The Root Mean Squared Error (RMSE) was used as 

a performance indicator for the exhaustive search 

technique.  The architecture of ANFIS consists of 5 

layers as shown in figure 2. In Figure 2, square nodes 

(adaptive nodes) show adjustable parameters that are 

to be learned, whereas the circle nodes (fixed nodes) 

are fixed parameters. A common rule set with two 
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fuzzy if-then rules is as follows (Oke et al 2018a; 

Oke et al, 2018b; Prakash and Kumar, 2014): 

Rule 1: If x is �� and y is	��, then �� =�� x + ��x+��                                              

15a 

Rule 2: If x is �� and y is	��, then �� = ��x +��x+��                                               

15b  

Where A, B are linguistic terms that are user defined 

and representing a range of values. The sequence 

and functions of the layers is as follows: 

Layer 1: Square node equipped with node function 

��
� = ���(�)                                                                                                               

15c 

Assuming x and y be the two typical input values fed 

at the two input nodes, which then transforms those 

values to the membership functions such as triangle, 

generalised bell-shaped, Gaussian membership etc. 

Where, ��
� is the membership function of �� and x is 

the input parameter to the node.  ��  is the linguistic 

label connected with the node function. 

Layer 2: This node multiplies the incoming signal 

and sends the product out. Each node output is the 

firing strength of a rule. 

�� = ���(�)× ���(�), � = 1,2                                                                                  

16a 

Layer 3: circle node. Node calculates the ratio of i-

th rule’s firing strength to the sum of all rules’ firing 

strengths: 

��
� =

��

�����
	, � = 1, 2                                                                                                  

16b 

Layer 4: Square node with node function: 

��
� = 	��

��� = ��
�(��	� + ��� + ��)                                                                            

17a 

p, q, r – parameter set (consequent, linear, 

parameters) 

Layer 5: circle node. This node computes the overall 

output as summation of all incoming signals. 

��
� = �������	������ = ∑ ��

�
� � =

∑ �����

∑ ���
                                                               

17b

 

 

 

Figure 2:  A basic structure of the ANFIS[30].  

 

2.4.2 Neural network modelling 

A three layer feed-forward back propagation neural 

network structure consists of input, output, and 

intermediate hidden layers with tangent sigmoid 

transfer function at the hidden layer and a linear 

transfer function at the output layer was constructed 

in Matlab 8.4 (2014a) software environment 

(MathWorks, Inc., Natick, MA). The structure was 

used for modelling and prediction of exergy-

sustainability indicators of turmeric drying. The 



Oke E.O.  et al./LAUTECH Journal of Engineering and Technology 15(1) 2021:75-92 

81 
 

input layer corresponds to the four experimental 

parameters including the drying air temperature, air 

velocity, sample thickness and drying time. The 

output layer for each network was exergy-

sustainability index. All data derived from the 

drying experiments were divided into training, 

validation, and test sets with a ratio of 50, 25, and 

25%, respectively. 

 Results and Discussion 

3.1 Descriptive statistics of Experimental data 

Table 1 shows statistical summary of drying 

experimental data and thermo-sustainability 

indicators (drying time, temperature, air velocity, 

sample thickness, exergy loss, exergy efficiency, 

exergy improvement potential and sustainability 

index), including mean, minimum, maximum, 

standard error, median, standard deviation, 

skewness, kurtosis for each variable. Skewness of 

drying temperature, time and exergy efficiency lies 

between -2.43 to -0.25 , while air velocity, sample 

thickness, exergy loss, exergy improvement 

potential and sustainability index skewness ranges 

from 1..54 to 5.48 as indicated in table 1. Kurtosis of 

drying temperature, time air velocity, sample 

thickness, exergy loss, exergy efficiency exergy 

improvement and sustainability index gave 4.17, -

0.75, 14.68, 31.06, 2.22, .36, 9.80 and 16.3 

respectively. Skewness and kurtosis are used as 

indicators for measuring the degree of normality and 

non-normality of data distributions (D’Agostino 

2017; Reise et al, 2018). The distribution curve for 

drying time is platykurtic; because the value for 

kurtosis is less than 3 as shown in table 1. However, 

the distribution curves for other process variables 

are greater than 3 as indicated in table 1, therefore, 

the curves are leptokurtic. Table 1 shows the 

distributions for air velocity, thickness, exergy 

efficiency, exergy improvement and SI are highly 

skewed due to the fact that the values are far from 

one. However, the distributions for temperature, 

time and exergy loss are slightly skewed because 

their values are not far from one. The present 

descriptive statistics results are similar and 

consistent with prior reports (Harrell, 2015; Snijders 

et al, 2017).

  

Table 1: Statistics of experimental data  

Statistical index Temp 

(0C) 

time 

(min) 

Air 

Vel(m/s)  

Thick 

(mm)  

Ex Loss Ex Eff. EIP SI 

Mean  61.30 210.90 1.61 2.09 0.87 0.89 0.16 29.75 

Minimum  40 10 1.5 2 0.03 0.37 0.00 1.60 

Maximum 65 420 3.0 5 3.58 0.98 1.48 320.26 

Standard error 0.63 14.23 0.03 0.06 0.10 0.01 0.03 6.47 

Median  63 240 1.5 2 0.61 0.93 0.04 13.75 

Standard deviation 5.18 116.46 0.25 0.45 0.80 0.11 0.27 52.98 

Kurtosis  4.17 -0.75 14.68 31.06 2.22 7.36 9.80 16.73 

Skewness -1.86 -0.25 3.47 5.48 1.54 -2.43 2.96 3.91 
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3.2 Exhaustive-search parametric analysis 

Four parameters were considered for 

analyzing the input parameters (drying temperature, 

air velocity, thickness and drying time) and EL, EE, 

EIP and SI as output parameters. A comprehensive 

search was conducted within the input parameters in 

order to select the set of the most optimum 

combination of the input variables that best 

influence the output parameters (EL, EE, EIP and 

SI). Neuro-fuzzy exhaustive search codes were 

written in Matlab 8.4(2014a) environment for 

developing the model with one epoch number and 

consequently reported the performance of input 

variable combinations. NFES results used the Root 

Mean Square Error (RMSE) as the parameter for 

quantifying the effect of each or combined drying 

variables on the output of the process (Azad et al, 

2016) .  

Figure 3 shows the input selection 

combination error level for exergy loss. The 

exhaustive search program was executed for input 

selection for exergy loss; and drying time is found to 

be the most influential variable that affects the 

exergy loss, as shown in figure3a. It was observed 

that there was no over-fitting between training and 

checking RMSE for one-variable input selection as 

claimed by previous researches (Ramasamy et al, 

2015; Li et al 2016). This suggests that further 

analysis can be performed on more than one input 

variable; therefore, new NFES architecture was 

developed with one epoch for higher input variable 

combinations. Similar computer program was used 

for identifying two and three relevant inputs for 

exergy loss by replacing 1 with 2 and 3 in exhsrch 

command arguments. Time-temperature and time-

temperature-air velocity are the most significant 

input combinations, influencing EL, for two and 

three input combination respectively as observed in 

figure 3b and 3c. Generally, the orders of variable 

influence for the EL are as follows: drying time> 

drying temperature> air velocity> thickness. The 

order of variable relevance is based on the value of 

RMSE; that is, the lowest RMSE gave the most 

relevant variable, while highest RMSE value gave 

the least relevant variable[18, 38]. The influence order 

of two and three variable input combination is 

shown in figure 3b and 3c.
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(a) one-input selection              (b) two-input selection             (c) three-input selection 
A = drying time, B = drying temperature, C =air velocity and D= sample thickness 
Figure 3: Input Selection Combination Error Level for Exergy Loss 

 

Figure 4 shows the plot of RMSE level 

against input variable selection combination for 

exergy efficiency. Drying time is the most important 

one-input variable for exergy efficiency due to the 

lowest RMSE value as depicted in figure 4a. 

However, the least relevant one-input variable for 

the efficiency is sample thickness as shown in figure 

4a. By and large, the orders of one-variable 

influence for the efficiency are as follows: drying 

time> air velocity>temperature>thickness as shown 
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in figure 4a. Figure 4b presents the order of two 

input parameter combinations on EE. The order 

revealed that Air velocity – drying time > 

temperature – time>Air velocity–time>thickness–

air velocity>time–thickness>temperature–thickness 

as depicted in figure 4b. Furthermore, temperature-

velocity-thickness>time-temperature-

velocity>time-velocity-thicness>time-temperature-

thicness are the order of three variable influence on 

exergy efficiency as observed in figure 4c.

 

0.0962

0.1205

0.1098

0.1312

A B C D

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

R
M

S
E

0.0988
0.1033

0.113

0.0945

0.1262

0.1034

AB AC AD BC BD CD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

R
M

S
E

0.0915

0.1026 0.1007

0.0826

ABC ABD ACD BCD

0.00

0.02

0.04

0.06

0.08

0.10

R
M

S
E

 
(d) one-input combination          (e) two-input combinations  (f): three-input combinations 
A = drying time, B = drying temperature, C =air velocity and D= sample thickness 
Figure 4: Input Selection Combination Error Level for Efficiency  

 

Figure 5 shows input selection combination 

for exergy improvement potential. Drying time is the 

most influential variable and sample thickness is the 

least significant variable as shown in figure 5a. 

Figure 5b revealed that the lowest RMSE was 

obtained in the combination of time and 

temperature; therefore, the combination of 

temperature-time gave highest influence on exergy 

improvement potential of the process.  Furthermore, 

three- input variable combination was analysed as 

shown in figure 5c. Three variable input 

combination of time-temperature-velocity is the 

optimal combination for exergy improvement 

potential of the drying process. Figure 6 also shows 

the relevant input variable identification for 

sustainability index of the rhizome drying. Figure 6a 

revealed that sample thickness is the most relevant 

variable while air velocity is the least important 

variable for SI of the drying. In addition, 

combination of time-thickness and velocity-

thickness are the most significant and least 

important two variable combinations selected by 

NFES, respectively, as shown in figure 6b. 

Combination of time-temperature-thickness is the 

optimal relevant three input variable combination; 

while temperature-velocity-thickness is the least 

three input variable combination found in figure 6c 

for SI. It was observed that all RMSE obtained from 

neuro-fuzzy exhaustive search is less than one; and 

the result obtained from this section is comparable 

with existing studies in the literature (Petkovic et al, 

2015; Azadbakht et al, 2017). The selected 

combinations were used for further analysis. Since 

both the single and optimal input variable 

combination have been identified, large epoch 

numbers was used to develop grid partitioning 

ANFIS structure for the prediction of exergy-

sustainability indicators.
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Figure 6: Input Selection Combination Error Level for Exergy sustainability index  
 

3.3 Soft-computing prediction of exergy-

sustainability indicators 

This section presents application of ANFIS, ANN 

and Multi-Linear Regression (MLR) models for the 

prediction of the selected input-output variables. 

Table 2 shows statistical parameters, RMSE and R2, 

which evaluate the degree of predictability of soft-

computing models.  For ANFIS model, R2 values 

ranged from 0.23 to 0.805 and RMSE values from 

0.22 to 5.1as observed in table 2. Some of R2 values 

were far from one as indicated in table 2. The RMSE 

values for ANFIS model were not close to zero 

(Chen et al 2017; Chong et al, 2015; Rezakazemi et 

al, 2017) therefore, the model results disagree with 

the experimental results. As it was shown from table 

2, MLR model has R2 values ranging from 0.22 to 

4.1 and RMSE values ranging from 0.12 to 0.98.  All 

the statistical indicators found for MLR are not 

generally close to the acceptable range  

For ANN model, R2 for the indicators lies 

from 0.83-0.99 and RMSE is ranged from 

0.0000038 to 0.17. It was noticed that all the R2 

values were closed to 1 and RMSE values were not 

far from zero. The obtained results from ANN model 

were consistent with existing findings from the 

literature (Chong et al 2015; Deo and Sahin, 2015). 

Based on the results obtained from this study, it is 

evidently found that ANN technique provides higher 

accuracy for the prediction of exergy-sustainability 

indicators than the ANFIS and MLR. Finally, the 

ANN results obtained from two and three input 

variable combinations were compared as shown in 

table 2; and it is apparently clear that two input 

variable combination outperforms the three inputs.
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Table 2: Statistical Parameters for Soft-Computing Model Performance 

  
ANFIS   ANN   MLR  

Indicator variable number        R2 RMSE     R2 RMSE      R2 RMSE 

Exergy Loss 2 0.307 0.963 0.97 0.0000063 0.317 0.98 

Exergy Efficiency 2 0.805 0.817 0.99 0.0000038 0.22 0.97 

Exergy Improvement 2 0.23 0.37 0.978 0.000048 0.27 0.34 

Sustainability Index 2 0.28 5.1 0.954 0.0031 4.1 0.12 

Exergy Loss 3 0.46 0.22 0.95 0.0000125 0.217 0.277 

Exergy Efficiency 3 0.25 0.43 0.88 0.018 0.6 0.52 

Exergy Improvement 3 0.251 0.433 0.902 0.17 0.06 0.5 

Sustainability Index 3 0.42 0.32 0.83 0.17 0.32 0.23 
 

3.4 Effect of turmeric rhizome drying conditions 

on exergy-sustainability indicators  

3.4.1 Effect of drying temperature on exergy-

sustainability indicators 

Figure 7 shows the EL, EE, EIP and SI for 

different drying air temperatures at air 

velocity1.5m/s, sample thickness 2mm and drying 

time 240 minutes. The highest and lowest EL was 

obtained at 650C and 400C respectively. It was 

observed from Figure 7a that as the drying air 

temperature increases, it results in higher EL. The 

behaviour is as a result of the higher latent heat of 

evaporation needed to remove the reasonable 

amount of moisture from the food material; 

consequently increased exergy usage. This 

behaviour is also similar to Lamidi et al, 2019.  EE - 

drying temperature profile, as shown in figure 7b, 

indicates that EE is decreasing as temperature 

increases. Figure 7b revealed that the maximum and 

minimum EE of the system was achieved at 400C 

(86.07%) and 650C (49.69%) respectively. EIP also 

follows EE - drying temperature as depicted in 

figure 7c, this shows the dependency of EIP on EE. 

The peak and lowest of EIP of the system was 

observed at 400C (0.407J/s) and 650C (1.148J/s) 

respectively. The pattern found in EE and EIP of the 

drying system in this study is consistent with 

previous studies (Castro et al, 2018; Beigi et al, 

2017).  SI of turmeric drying process varies from 

1.98 to 7.17. It was observed that at higher efficiency 

drying temperature, the SI increases and 

consequently, the environmental impact becomes 

lower. The SI values obtained in this study are 

similar to Beigi et al, 2017.
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Figure 7: Effect of drying air temperature on thermo-sustainability indicators 

3.4.2 Effect of drying air velocity on exergy-

sustainability 

Figure 8 shows the variation of drying air velocity 

on (EL), (EE), (EIP) and (SI) of turmeric drying. It 

was observed from figure 8a that exergy loss rate 

increases as air velocity is increased. The highest 

loss was reached at 3m/s, while the lowest loss was 

observed at 1.5m/s. The possible explanation for this 

occurrence is as a result of the higher influx of air in 

the drying chamber against the food material 

moisture content. The finding obtained from this 

study is similar to Azadbakht et al, 2017. Maximum 

EE was obtained at air velocity of 1.5 m/s (95%). 

The improvement potential needed for the drying 

system at lower air velocity relatively small as 

compared with higher air velocity as observed in 

figure 8c. The highest value (0.137J/s) of EIP was 

obtained at air velocity 3m/s as seen in figure 8c. 

Figure 8d shows the effect of drying air on SI of 

drying system; the figure revealed that the lowest SI 

value was obtained at air velocity 3m/s (8.81). 
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Figure 8: Effect of air velocity on thermo-sustainability indicators 
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3.4.3 Effect of sample thickness on exergy-

sustainability 

Figure 9 shows the plot of EL, EE, EIP and SI 

against the variation of the sample thickness during 

turmeric rhizome drying. The maximum EL, EE, 

EIP and SI were observed at thickness 5mm, 3mm, 

5mm and 3mm, respectively, as shown in figure 9. 

However, the lowest EL, EE, EIP and SI were 

obtained at thickness 3mm, 5mm, 3mm and 5mm 

respectively. The pattern of the results in figure 9a 

and c are similar to (Azadbakht et al, 20177; Beigi 

et al 2017) which show the increase in the thickness 

leads to EL and EIP increase and the behaviour in 

figure 9b and 9d is vice versa to the counterpart 

figure (9a and c). 
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Figure 9: Effect of sample thickness on thermo-sustainability indicators 

3.4.4 Effect of drying time on exergy-

sustainability 

Figure 10 presents the effect of drying time at 

different drying temperatures (500C, 550C, 600C and 

650C) on thermo-sustainability indicators. Figure 

10a shows that EL increases as drying time 

increases. The lowest EL was obtained at process 

time 30 minutes for all the studied temperatures. 

However, the highest EL achieved at drying time 

240, 240, 220 and 310 minutes for 65, 60, 55 and 

500C respectively as shown in figure 10a. Figure 10b 

and c show that as the drying time increases the EE 

decreases, while EIP increases at different drying 

temperatures. It was observed that SI of turmeric 

rhizome drying increased at the beginning of the 

process as depicted in figure 10d. However, the SI 
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was reducing as drying operation progresses as 

shown in figure 10d.
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Figure 10: Effect of drying time on thermo-sustainability indicators 

3.5 Effect of turmeric rhizome drying conditions 

on energy utilization  

Figure 11a shows that increase in the drying 

temperature leads to an increase in the energy 

utilization ratio while figure 11b depicted that 

energy utilization ratio increases with increase in the 

inflow of air into the drying system.These results are 

similar to the findings of Azadbakht et al, 2017 and 

Bennamoun et al, 2003. on a coroba slices dryer and 

the design of a solar dryer for agricultural products, 

respectively. The energy utilization ratio in figure 

11c increased simultaneously as the thickness of the 

turmeric samples was increased. The values for the 

energy utilization in figure 11d was inconsistent as 

the drying time increases, with the highest value 

(0.97979) observed at 220minutes and lowest 

(0.61054) at 20minutes indicating that increase in 

the drying time leads to adequate consumption of the 

energy in the drying system.
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Figure 11: Effect of the drying conditions on energy utilization 

Conclusion 

Thermo-sustainability indicators such as EL, EE, 

EIP and SI of turmeric rhizome drying were 

experimentally determined and soft-computing 

models were developed for the input variables 

selection and prediction for indicators of the 

rhizome drying. Experimentally, the results 

indicated that highest and lowest EL attained at 

650C, 3m/s, 5mm, 240minutes and 400C, 1.5m/s, 

3mm, 30minutes respectively. Moreover, the results 

showed that the peak and minimum EE occurred at 

400C, 1.5 m/s, 3mm, 30 minutes and 650C, 3 m/s, 

5mm and 240 minutes. The highest and lowest EIP 

obtained at 650C, 3m/s, 5mm, 240minutes and 400C, 

1.5m/s, 3mm, 30minutes respectively. The results 

also showed that the highest and minimum SI 

occurred at 400C, 1.5 m/s, 3mm, 30 minutes and 

650C, 3 m/s, 5mm and 240 minutes. Drying time 

(RMSE=0.0031), temperature (RMSE=0.096), 

temperature (RMSE=0.046) and sample thickness 

(RMSE=0.748) are the single relevant parameters 

for Exergy Loss (EL), Exergy Efficiency (EE), 

Exergetic Improvement Potential (EIP) and 

Sustainability Index (SI) respectively. The results 

showed that temperature-time (RMSE=0.0031), 

temperature-velocity (RMSE=0.0945), temperature-

time (RMSE=0.046) and time-thickness 

(RMSE=0.7534) are the most important two-input 

combinations for EL, EE, EIP and SI 

correspondingly. NFES also revealed that time-

temperature-velocity (RMSE=0.004), temperature-

velocity-thickness (RMSE=0.082), time-

temperature-velocity (RMSE=0.0436) and time-

temperature-thickness (RMSE=0.758) are the three-

input significant combination for EL, EE, EIP and 

SI respectively. The ANN results show that two-
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input combination architectures gave the highest R2 

0.998 with minimum RMSE for the exergy-

sustainability indicators. 
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