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ABSTRACT 

In the paper, dynamics of two parallel beams which is interconnected through a nonlinear variable viscoelastic 

Winkler-type layer under a moving concentrated load is investigated. The elastic characteristics of a simply 

supported Euler-Bernoulli beam system have been applied. The motion characteristics due to force of excitation 

on the system is described by a coupled governing fourth order partial differential equations of motion with variable 

coefficient. A solution scheme involving seperable method have been applied to obtain a coupled coupled second 

order ordinary differential equations. The decoupling and simplification of the coupled system yields an uncoupled 

sets of second order ordinary differential equations and this has been attained using an asymptotic method of 

Struble. A semi analytic differential transform method is applied to solve the resulting equations. A numerical 

experiment is explored to demonstrate the simplicity and efficiency of the method employed. The effects of various 

parameters including speed of the moving load, inertia of the moving load, stiffness and viscoelastic parameters of 

the interconnected layer were obtained. The result indicates that increasing the load mass has caused a decrease 

in the response amplitude of deflection of the two beams and this is found to be in good agreement with the existing 

results. 
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INTRODUCTION  

The problem of concerning the assessment of the 

dynamic behavior of elastic structures under moving 

loads in engineering applications have been of great 

concern to various researchers in engineering, applied 

mathematics and physics disciplines. In most of the 

previous studies concerted efforts have been deployed 

at studying free and forced vibration of uniform single 

Euler-Bernoulli beam structures due to their various 

significance in engineering practices. In the excellent 

monograph of Fryba (1972), a comprehensive analysis 

of techniques for the analysis of the problems 

concerning vibrating structures under moving loads 

were developed. Oniszczuk (2000) presented the free 

vibrations of two parallel simply supported beam 

which are continuously connected through a Winkler-

type elastic layer. The differential equations of motion 

is formulated and solved using the method of classical 

Euler-Bernoulli beam theory. Li et al. (2016) 

investigated the dynamical behaviour of a double 

beam system which are interconnected by a 

viscoelastic layer. A semi-analytical method has been 

developed to analyze the natural frequencies and 

corresponding mode shapes of the vibrating 

configuration. The iterated modal-expansion method 

is further applied to determine reponses due to forced 

vibration of the vibration. 

In the analysis conducted by Mirzabeigy et al. (2016), 

free transverse vibration of the two parallel beams 

which are interconnected through variable stiffness 

Winkler-type elastic layer is considered. The system 

has been characteristics by Euler-Bernoulli beam 

system with the translational and rotational elastic end 

supports. The solution of the motion equation was 

achieved through a semi analytical approach called 

differential transform method. The result obtained are 

relatively new and to compare with the existing 

contributions is scarce and hence the justification is 

provided for in special cases presented. Seelig and 

Hoppmann (1964) investigated the free vibration of 

two parallel beams which are elastically 

interconnected through  the development and solution 

of the  partial differential equations of motion. 

 

Abu-Hilal (2006) studied the dynamic 

response of a double Euler-Bernoulli beam system 

traversed by a constant moving load. A detail 

investigation on the effects of a number of parameters 

including moving speed of the load, viscoelastic layer 

on the dynamic response of the beams was 

investigated. Zhang et al (2008) investigated vibration 

of buckling of double-beam system under compressive 

axial loading. The effect of compressive axial load on 

forced transverse vibration of a double –beam was 

studied by Zhang et al. (2008). Impact on an elastically 

connected double-beam system study was conducted 

by Seeling and Hoppmann (2011). Stojanovic et al 

(2011) also studied the effect of rotary inertia shear on 

vibration and buckling of a double beam system under 

compressive axial loading. Stojanovic and Kozic 
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(2012) carried out an extensive investigation into 

forced vibration and buckling of a Rayleigh and 

Timoshenko double-beam system interconnected by a 

Winkler elastic layer under compressive axial loading. 

The dynamic behavior of a double Rayleigh beam 

system traversed by uniformly partially distributed 

moving load was studied by Gbadeyan and Agboola 

(2012).  

In the investigation by Kelly and Nicely (2014), an 

exact solution for free vibrations of a series of uniform 

Euler-Bernoulli beams connected by viscoelastic layer 

developed.The forced vibration problem of the system 

is analyzed using finite Fourier and Laplace integral 

transformations. 

Mohammedi and Nasirshoaibi (2015), investigated the 

forced traverse vibration of an elastically connected 

simply-supported double Rayleigh Beam system with 

a Pasternak middle layer subjected to compressive 

axial load. Mirzabeigy and Madoliat (2015) presented 

free transverse vibration of two elastically restrained 

beams which are partially connected by an elastic 

Winkler layer. The natural frequencies were derived 

by deploying a semi-analytical differential transform 

method. 

Free transverse vibration analysis of two parallel 

beams interconnected through a variable stiffness 

Winkler-type layer was presented by Mirzabeigy et al 

(2016). A semi-analytical solution of the free vibration 

was achieved using differential transform method. Lie 

et al (2016) also presented a semi-analytical method to 

investigate the natural frequencies and mode shape of 

a double-beam system interconnected by viscoelastic 

layer. The modal expansion method iterated method 

was applied to determine the forced vibration 

responses in the double-beam based on the natural 

frequencies and mode shapes obtained from the free-

vibration analysis. 

A new modified multi-level residue harmonic balance 

method was applied by Rahman and Lee (2017), to 

investigate the forced nonlinear vibration of axially 

loaded double beams. The main advantage of the 

method was that a set of decoupled nonlinear algebraic 

equations has been generated at each solution level. 

This has invariably reduces the computational efforts 

compared with solving the coupled nonlinear 

algebraic equations generated in the classical 

harmonic balance. 

Mirzabeigy and Madoliat (2019) presented a note on 

free vibration of double beam system of small 

amplitude with interconnected nonlinear dynamic 

layer. The effect of interconnected layer was 

investigated by first making a distinction between 

synchronous and asynchronous motion of beams. The 

results obtained shows that the connecting layer 

mainly affected the first mode asynchronous 

frequency, having little effect on higher mode 

frequency.  

To the best knowledge of the authors of this article, 

most of the earlier works concerning vibration of two 

beams interconnected through a nonlinear variable 

Winkler-type layer along the length of beams under 

moving loads have been limited to those acted upon 

only by moving forces. The implication is that the 

effects of the inertial of the moving loads have not 

been accounted for in Mirzabeigy et al. (2016). In this 

study, vibration analysis of two parallel beams 

interconnected through a nonlinear variable stiffness 

under a moving load whose inertial is non-negligible 

is conducted using a solution scheme involving 

separable method, asymptotic method of Struble and 

Differential Transform method (DTM). 

 

MATHEMATICAL FORMULATION OF THE 

PROBLEM 

A system which is composed of two undamped, finite. 

prismatic and homogenous parallel beams as shown in 

Figure 1, is considered. The beams are simply 

supported at both ends. The continuous interconnected 

nonlinear viscoelastic Winkler-inner layer which is a 

function of spatial coordinate 𝑥, stiffness 𝑐 and a 

damping parameter 𝜀0 is assumed. It is also assumed 

that both beams have the same length 𝐿 and mass per 

unit length 𝜇. 
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The beam’s modulus of elasticity is 𝐸 while the cross 

sectional moment of inertia is 𝐽. The constant 

gravitational force is 𝑔 (9.81𝑚𝑠2) and 𝑡 is time. The 

upper beam is under the constant influence of an 

excitation load 𝑅1(𝑥, 𝑡) of mass 𝑀𝐿 moving with a 

steady speed 𝑣 along the length of the beams. 

On the basis concerning Euler-Bernoulli beam theory, 

the dynamic vibration responses 𝑉1(𝑥, 𝑡) of the upper 

beam and 𝑉2(𝑥, 𝑡) of the lower beam fulfilled the 

following pair of coupled governing partial 

differential equations of motion.

 

 

   𝐸𝐽
𝜕4𝑉1(𝑥,𝑡)

𝜕𝑥4 +  𝜇
𝜕2𝑉1(𝑥,𝑡)

𝜕𝑡2 + [𝑓(𝑥) + 𝜀0
𝜕

𝜕𝑡
] [𝑉1(𝑥, 𝑡) − 𝑉2(𝑥, 𝑡)] =  𝑅1(𝑥, 𝑡)      (1)  

 

       𝐸𝐽
𝜕4𝑉2(𝑥,𝑡)

𝜕𝑥4 +  𝜇
𝜕2𝑉2(𝑥,𝑡)

𝜕𝑡2 + [𝑓(𝑥) + 𝜀0
𝜕

𝜕𝑡
] [𝑉2(𝑥, 𝑡) − 𝑉1(𝑥, 𝑡)] =  0              (2)                                           

The dynamic load function is,                                         

       𝑅1(𝑥, 𝑡) = 𝑀𝐿 [𝑔 − (
𝜕2𝑉1(𝑥 ,𝑡)

𝜕𝑡2 + 2𝑣
𝜕2𝑉1(𝑥,𝑡)

𝜕𝑥𝜕𝑡
+ 𝑣2 𝜕2𝑉1(𝑥,𝑡)

𝜕𝑥2 )] 𝛿(𝑥 − 𝑣𝑡)         (3)                                  

           𝑓(𝑥) = 𝑐(1 + 𝑐1𝑥 + 𝑐2𝑥2)                                                                                   (4)                                                                                  

 where 𝑐, 𝑐1, 𝑐2 are constants, 0 ≤ 𝑥 ≤ 𝐿. 

The function 𝛿(∙) is the Dirac delta function usually expressed as 

           𝛿(∙) = {
0,   𝑥 ≠ 0

 
∞,   𝑥 = 0

                                                                                                (5)                                                                                                

We also note that the Dirac delta function 𝛿(𝑥 − 𝑣𝑡) is an even function. Hence, it is expressed as a Fourier cosine 

series [1,3],                                                                                                                 

           𝛿(𝑥 − 𝑣𝑡) =
1

𝐿
+

2

𝐿
∑ 𝑐𝑜𝑠

∞

𝑛=1

𝑛𝜋𝑣𝑡

𝐿
cos

𝑛𝜋

𝐿
𝑥                                                       (6) 

Since the dynamic beams is simply supported, the following elastic conditions are defined [25, Li, et al (2016), 

Mirzabeigy et. al. (2016)]: 

          𝑉1(𝑜, 𝑡) = 0 = 𝑉1(𝐿, 𝑡)                                                                                         (7) 

Upper beam 

with 𝑉1(𝑥, 𝑡) 

Lower beam 

with 𝑉2(𝑥, 𝑡) 

c 

v 

 

Viscoelastic Winkler Foundation 

𝝁 

𝑬𝑱 

𝑅1(𝑥, 𝑡) 

 

 

Figure 1: A Double Euler-Bernoulli beam System 
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          𝑉2(𝑜, 𝑡) = 0 = 𝑉2(𝐿, 𝑡)                                                                                         (8)          

           
𝜕2𝑉1(𝑜, 𝑡)

𝜕𝑥2
= 0 =

𝜕2𝑉1(𝐿, 𝑡)

𝜕𝑥2
                                                                               (9) 

          
𝜕2𝑉2(𝑜, 𝑡)

𝜕𝑥2
= 0 =

𝜕2𝑉2(𝐿, 𝑡)

𝜕𝑥2
                                                                             (10)  

The corresponding initial conditions at  𝑡 = 0 are 

           𝑉1(𝑥, 𝑡) = 0 =
𝜕𝑉1(𝑥, 𝑡)

𝜕𝑡
                                                                                    (11) 

           𝑉2(𝑥, 𝑡) = 0 =
𝜕𝑉2(𝑥, 𝑡)

𝜕𝑡
                                                                                    (12) 

METHOD OF SOLUTION 
The initial-boundary-value problem as defined in 

equations (1), (2) and (3) are solved by introducing a 

set of solution scheme which involves; (i) a series 

variable separable method, to  reduce the coupled 

fourth order partial differential equations of motion to 

a set of coupled second order ordinary differential 

equations. (ii) the modification of asymptotic method 

of Struble to simplify the resulting equations in step 

(i). (iii) solving the simplified set of equations in step 

(ii) by applying a semi-analytical scheme of 

differential transformation initially conceived by Zhou 

(1986). 

 

THE TRANSFORMED EQUATIONS 

In order to solve the coupled fourth order partial 

differential equations (1) and (2),  the following series 

are assumed for equations (1) and (2),

 

                  𝑉1(𝑥, 𝑡) = ∑ 𝛼𝑚(𝑚, 𝑡)𝑈𝑚(𝑥)

∞

𝑚=1

                                                                (13) 

                   𝑉2(𝑥, 𝑡) = ∑ 𝛽𝑚(𝑚, 𝑡)𝑈𝑚(𝑥)

∞

𝑚=1

                                                               (14) 

where 𝛼𝑚(𝑚; 𝑡) and 𝛽𝑚(𝑚; 𝑡) are the unknown functions of time to be determined later. 𝑈𝑚(𝑥) = 𝑠𝑖𝑛
𝑚𝜋

𝐿
𝑥 is the 

known mode shape function of a simply supported single beam [Michaltsas (1996), Oniszeuk (2000), Oniszeuk 

(2003)] 

Introducing equations (13) and (14) on equations (1) and (2), the obtained equations are, 

𝐸𝐽 ∑ 𝛼𝑚(𝑚, 𝑡)𝑈𝑚
𝑖𝑣(𝑥) + 𝜇 ∑ �̈�𝑚(𝑥, 𝑡)𝑈𝑚(𝑥) + 𝑓(𝑥) ∑ 𝛼𝑚(𝑚, 𝑡)𝑈𝑚(𝑥)

∞

𝑚=1

∞

𝑚=1

∞

𝑚=1

 

                − 𝑓(𝑥) ∑ 𝛽𝑚(𝑚, 𝑡)𝑈𝑚(𝑥) +

∞

𝑚=1

𝜀0 ∑ �̇�𝑚(𝑚, 𝑡)𝑈𝑚(𝑥) 

∞

𝑚=1

 

                − 𝜀0 ∑ �̇�𝑚(𝑚, 𝑡)𝑈𝑚(𝑥)

∞

𝑚=1

= 𝑅1(𝑥, 𝑡)                                                         (15) 

    𝐸𝐽 ∑ 𝛽𝑚(𝑚, 𝑡)𝑈𝑚
𝑖𝑣(𝑥) + 𝜇 ∑ �̈�𝑚(𝑚, 𝑡)𝑈𝑚(𝑥) + 𝑓(𝑥) ∑ 𝛽𝑚(𝑚, 𝑡)𝑈𝑚(𝑥)

∞

𝑚=1

∞

𝑚=1

∞

𝑚=1

 

                    − 𝑓(𝑥) ∑ 𝛼𝑚(𝑚, 𝑡)𝑈𝑚(𝑥) +

∞

𝑚=1

𝜀0 ∑ �̇�𝑚(𝑚, 𝑡)𝑈𝑚(𝑥)

∞

𝑚=1

 

 

 

 

( 
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                  −𝜀0 ∑ �̇�𝑚(𝑚, 𝑡)𝑈𝑚(𝑥)

∞

𝑚=1

= 0                                                                 (16) 

For the ease of simplification of equation (15) in particular, the dynamic load function 𝑅1(𝑥, 𝑡) is further assumed as 

              𝑅1(𝑥, 𝑡) = ∑ 𝜓𝑚(𝑚, 𝑡)𝑈𝑚(𝑥)

∞

𝑚=1

                                                                   (17) 

where  𝜓𝑚(𝑚; 𝑡) is the time function. Thus, for an arbitrary subscript 𝑘, equation (13) is substituted into equation 

(3), to obtain, 

𝑅1(𝑥, 𝑡) = [𝑀𝐿𝑔 − 𝑀𝐿 (∑ �̈�𝑘(𝑘, 𝑡)𝑈𝑘(𝑥) + 2𝑣 ∑ �̇�𝑘(𝑘, 𝑡)𝑈𝑘
′ (𝑥)

∞

𝑘=1

∞

𝐾=1

 

                                 + 𝑣2 ∑ �̇�𝑘(𝑘, 𝑡)𝑈𝑘
′′(𝑥)

∞

𝑘=1

)] 𝛿(𝑥 − 𝑣𝑡)                                       (18) 

Now, a known normalized deflection function 𝑉𝑗(𝑥), 𝑗 = 1, 2, 3, … is applied on equation (17) initially. The 

orthonormality property for the normalized deflection curves 𝑉𝑚(𝑥),   𝑚 = 1, 2, 3, … is observed, and, the resulting 

equation from earlier operation performed is compared with equation (18), and an integral operation introduced along 

the beam’s length thereby yielding the following time function. 

           𝜓𝑚(𝑚, 𝑡) =  𝐷11 + 𝐷12 + 𝐷13 + 𝐷14                                                                  (19) 

where   

             𝐷11 =  
𝑀𝐿𝑔

𝐿
𝑑1(𝑗) + 2

𝑀𝐿

𝐿
∑ cos

𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

𝑑11(𝑛, 𝑗)                                   (19a) 

𝐷12 = − 
𝑀𝐿

𝐿
[∑ �̈�𝑘(𝑘, 𝑡)

∞

𝑘=1

𝑑2 + 2 ∑ �̈�𝑘(𝑘, 𝑡) ∑ cos
𝑛𝜋𝑣𝑡

𝐿
𝑑22(𝑗, 𝑘)

∞

𝑛=1

∞

𝑘=1

] (19𝑏) 

             𝐷13 = − 2
𝑀𝐿

𝐿
𝑣 ∑ �̇�𝑘(𝑘, 𝑡)

∞

𝑘=1

[𝑑3(𝑗, 𝑘) + 2 ∑ cos
𝑛𝜋𝑣𝑡

𝐿
𝑑33(𝑗, 𝑘)

∞

𝑛=1

]  (19c) 

             𝐷14 = − 
𝑀𝐿

𝐿
𝑣2 ∑ 𝛼𝑘(𝑘, 𝑡)

∞

𝑘=1

[𝑑4(𝑗, 𝑘) + 2 ∑ cos
𝑛𝜋𝑣𝑡

𝐿
𝑑44(𝑗, 𝑘)

∞

𝑛=1

]  (19d) 

 𝑑1(𝑗) = ∫ 𝑉𝑗(𝑥)𝑑𝑥
𝐿

0

;    𝑑11(𝑗) = ∫ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿
𝑉𝑗(𝑥)𝑑𝑥

𝐿

0

                                   (19e) 

 𝑑2(𝑗, 𝑘) = ∫ 𝑈𝑘(𝑥)𝑉𝑗(𝑥)𝑑𝑥 ;   𝑑22(𝑗, 𝑘) = ∫ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿
𝑈𝑘(𝑥)𝑉𝑗(𝑥)𝑑𝑥

𝐿

0

𝐿

0

        (19f)  

𝑑3(𝑗, 𝑘) = ∫ 𝑈𝑘
′ (𝑥)𝑉𝑗(𝑥)𝑑𝑥

𝐿

0

;   𝑑33(𝑗, 𝑘) = ∫ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿
𝑈𝑘

′ (𝑥)𝑉𝑗(𝑥)𝑑𝑥        (19g)
𝐿

0

 

𝑑4(𝑗, 𝑘) = ∫ 𝑈𝑘
′′(𝑥)𝑉𝑗(𝑥)𝑑𝑥

𝐿

0

;       𝑑44(𝑗, 𝑘) = ∫ 𝑐𝑜𝑠
𝑛𝜋𝑥

𝐿
𝑈′𝑘

′ (𝑥)𝑉𝑗(𝑥)𝑑𝑥
𝐿

0

  (19ℎ) 

 

In view of equations (19), (19a) – (19h), the obtained dynamic load function 𝑅1(𝑥, 𝑡) is substituted into equation 

(15), to obtain, 
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  𝐸𝐽 ∑ 𝛼𝑚(𝑚, 𝑡)𝑈𝑚
𝑖𝑣(𝑥) + 𝜇 ∑ �̈�𝑚(𝑚, 𝑡)𝑈𝑚(𝑥) + 𝑓(𝑥) ∑ 𝛼𝑚(𝑚, 𝑡)𝑈𝑚(𝑥)    

∞

𝑚=1

∞

𝑚=1

∞

𝑚=1

 

− 𝑓(𝑥) ∑ 𝛽𝑚(𝑚, 𝑡)𝑈𝑚(𝑥) +

∞

𝑚=1

𝜀0 ∑ �̇�𝑚(𝑚, 𝑡)𝑈𝑚(𝑥) −  𝜀0 ∑ �̇�𝑚(𝑚, 𝑡)𝑈𝑚(𝑥) 

∞

𝑚=1

∞

𝑚=1

 

=  ∑ [
𝑀𝐿𝑔

𝐿

∞

𝑚=1

[𝑑1(𝑗) + 2 ∑ cos
𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

𝑑11(𝑛, 𝑗)] 

              –  
𝑀𝐿

𝐿
∑ �̈�𝑘(𝑘, 𝑡)

∞

𝑘=1

[𝑑2(𝑗, 𝑘) + 2 ∑ cos
𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

𝑑22(𝑗, 𝑘)] 

− 2
𝑀𝐿

𝐿
𝑣 ∑ �̇�𝑘(𝑘, 𝑡)

∞

𝑘=1

[𝑑3(𝑗, 𝑘) + 2 ∑ cos
𝑛𝜋𝑣𝑡

𝐿
𝑑33(𝑗, 𝑘)

∞

𝑛=1

] 

− 
𝑀𝐿

𝐿
𝑣2 ∑ 𝛼𝑘(𝑘, 𝑡)

∞

𝑘=1

[𝑑4(𝑗, 𝑘) + 2 ∑ cos
𝑛𝜋𝑣𝑡

𝐿
𝑑44(𝑗, 𝑘)

∞

𝑛=1

]] 𝑈𝑚(𝑥)    (20) 

For free vibration of a dynamic single Euler-Bernoulli beam system, 

𝐸𝐽𝑈𝑚
𝑖𝑣(𝑥) − 𝜇𝜔𝑚

2 𝑈𝑚(𝑥) = 0                                                                                       (21) 

               𝜔𝑚
2  =

𝜆𝑚

𝐿4

𝐸𝐽

𝜇
                                                                                                      (22) 

for which 𝜔𝑚 is the 𝑚𝑡ℎ natural circular frequency of the beam. 

Equation (21) is substituted into equation (20) and some algebraic simplifications is performed on the obtained 

equation to yield, 

    𝜔𝑚
2 𝛼𝑚(𝑚, 𝑡) + �̈�𝑚(𝑚, 𝑡) +

𝑐

𝜇
[𝛼𝑚(𝑚, 𝑡) − 𝛽𝑚(𝑚, 𝑡)] 

               + 𝑘3(𝑥)[𝛼𝑚(𝑚, 𝑡) − 𝛽𝑚(𝑚, 𝑡)] + 𝑘4(𝑥)[𝛼𝑚(𝑚, 𝑡) − 𝛽𝑚(𝑚, 𝑡)] 

           + 
𝜀0

𝜇
�̇�𝑚(𝑚, 𝑡) −

𝜀0

𝜇
�̇�𝑚(𝑚, 𝑡) =

𝑀𝐿

𝐿
[𝑑1(𝑗) + 2 ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

𝑑11(𝑛, 𝑗)] 

               −  𝜃1 ∑ �̈�𝑘(𝑘, 𝑡)

∞

𝑘=1

[𝑑2(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

𝑑22(𝑗, 𝑘)] 

               −  2𝜃1𝑣 ∑ �̇�𝑘(𝑘, 𝑡)

∞

𝑘=1

[𝑑3(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝑑33(𝑗, 𝑘)

∞

𝑛=1

] 

               −  𝜃1𝑣2 ∑ 𝛼𝑘(𝑘, 𝑡)

∞

𝑘=1

[𝑑4(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿
𝑑44(𝑗, 𝑘)

∞

𝑛=1

]               (23) 

 where,                             

             𝑘3(𝑥) =
𝑐𝑐1

𝜇
𝑥;   𝑘4(𝑥) =

𝑐𝑐2

𝜇
𝑥2;    𝜃1 =

𝑀𝐿

𝜇𝐿
 (mass ratio)               (23a) 

Thus, the dynamic equation of motion which is meant for the upper beam have been simplified to yield a reduced 

coupled second order ordinary differential equation (23). A similar technique has been employed to simplify 

equation (16). Hence, the obtained equation is 
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             �̈�𝑚(𝑚; 𝑡) + 𝜔𝑚
2 𝛼(𝑚; 𝑡) +

𝑐

𝜇
[𝛽𝑚(𝑚, 𝑡) − 𝛼𝑚(𝑚, 𝑡)] 

+𝑘3(𝑥)[𝛽𝑚(𝑚, 𝑡) − 𝛼𝑚(𝑚, 𝑡)] + 𝑘4(𝑥)[�̇�𝑚(𝑚, 𝑡) − 𝛼𝑚(𝑚, 𝑡)] 

               +
𝜀0

𝜇
�̇�𝑚(𝑚, 𝑡) −

𝜀0

𝜇
�̇�𝑚(𝑚, 𝑡) = 0                                                                (24) 

DECOUPLING OF EQUATIONS 

At the moment, effort is geared toward obtaining a 

simplified form of the coupled second order ordinary 

differential equations. Following this, the decoupling 

is initially attained by considering a system of 

disjointed Euler-Bernoulli beams, with the 

corresponding end supports. In this case, it is assumed 

that the upper beam (𝑖 = 1) is acted upon by a 

concentrated moving mass while the lower beam (𝑖 =
2) vibrates freely. Hence, equations (23) and (24) 

reduces to,

  

   �̈�𝑚(𝑚; 𝑡) + 𝜔𝑚
2 𝛼(𝑚; 𝑡) + 𝜃1 ∑ �̈�𝑘(𝑘, 𝑡) [𝑑2(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

𝑑22(𝑗, 𝑘)]

∞

𝑘=1

 

                + 2𝜃1𝑣 ∑ �̇�𝑘(𝑘, 𝑡) [𝑑3(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

𝑑33(𝑗, 𝑘)]

∞

𝑘=1

 

   + 𝜃1𝑣2 ∑ 𝛼𝑘(𝑘, 𝑡) [𝑑4(𝑗, 𝑘) + 2 ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

𝑑44(𝑗, 𝑘)]

∞

𝑘=1

= 𝑅0𝐴𝑉𝑚(𝑣𝑡)      (25) 

             𝑅0𝐴 = 𝜃1𝐿𝑔                                                                                                       (25a) 

            �̈�𝑚(𝑚; 𝑡) + 𝜔𝑚 
2 𝛽𝑚(𝑚, 𝑡) = 0                                                                          (26)  

METHOD OF OBTAINING MODIFIED 

FREQUENCY 
At the moment, it is observed that equations (25) and 

(26) are still coupled and difficult to solve. In order to 

overcome the solution difficulty, an approximate 

analytical scheme which is a modification of Struble’s 

asymptotic technique [1,3] is introduced to simplify 

equation (25) in particular. This involves deriving a 

modified frequency due to the inertia effect of the 

mass of the moving load. To this end, each differential 

operator in equations (25) and (26) is replaced by an 

equivalent operator defined by the modified 

frequency. Hence, the mass ratio of the moving load to 

its length is represented by 𝜃1 and a small parameter 𝜃 

is introduced such that,

 

              𝜃 =
𝜃1

1 + 𝜃1

                                                                                                         (27) 

Effortlessly, one can verify that,                         𝜃1 = 𝜃 +
𝑂(𝜃2)                                                                                                (28) 

To obtain the desired modified frequency, Struble’s technique requires that the first approximate solution to the 

homogeneous part of equation (25) is presented as 

    𝛼𝑚(𝑚. 𝑡) = 𝛾(𝑚. 𝑡) cos[𝜔𝑚𝑡 − 𝜙𝑚(𝑚. 𝑡)] + ∑ 𝜆𝑟𝛼𝑟

𝑅

𝑟=1

(𝑚. 𝑡) + 0(𝜆𝑅+1)    (29) 

where  0 < 𝑅 < ∞, 𝛾(𝑚, 𝑡) and 𝜙𝑚(𝑚, 𝑡) are slowly time varying functions of time wherein, 

         �̇�(𝑚, 𝑡) ≃ 𝑂(𝜃),      �̈�(𝑚, 𝑡) ≃ 𝑂(𝜃2)                                                              (30)  

          �̇�(𝑚, 𝑡) ≃ 𝑂(𝜃),      �̈�(𝑚, 𝑡) ≃ 𝑂(𝜃2)                                                               (31) 

The notation " ≃ " denotes “is of order” 
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By applying equation (29) on the homogeneous part of equation (25), and having taken equation (28) into 

consideration, the obtained equations after some algebraic simplification is,  

           2𝜔𝑚𝜃(𝑚; 𝑡)α̇(𝑚; 𝑡) cos[𝜔𝑚𝑡 − 𝜙𝑚(𝑚. 𝑡)] 

                                 − 2𝜔𝑚𝜃(𝑚; 𝑡) sin[𝜔𝑚𝑡 − 𝛼𝑚(𝑚. 𝑡)] 

                                 − 2𝜆𝑣𝜔𝑚𝜃(𝑚; 𝑡)𝑑3(𝑗. 𝑚) sin[𝜔𝑚𝑡 − 𝛼𝑚(𝑚. 𝑡)] 

                                 − 4𝜆𝑣𝜔𝑚𝑑3(𝑗. 𝑚) ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

sin[𝜔𝑚𝑡 − 𝛼𝑚(𝑚. 𝑡)] 

                                 − 𝜆𝜔𝑚
2 𝜃(𝑚; 𝑡)𝑑1(𝑗. 𝑚) cos[𝜔𝑚𝑡 − 𝛼𝑚(𝑚. 𝑡)] 

− 2𝜆𝜔𝑚
2 𝜃(𝑚; 𝑡)𝑑2(𝑗. 𝑚) ∑ 𝑐𝑜𝑠

𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

cos[𝜔𝑚𝑡 − 𝛼𝑚(𝑚. 𝑡)] 

                                 + 𝜆𝑣2𝑑3(𝑗. 𝑚)𝜃(𝑚; 𝑡) cos[𝜔𝑚𝑡 − 𝛼𝑚(𝑚. 𝑡)] 

                  + 2𝜆𝑣2𝑑3(𝑗. 𝑚)𝜃(𝑚; 𝑡) ∑ 𝑐𝑜𝑠
𝑛𝜋𝑣𝑡

𝐿

∞

𝑛=1

cos[𝜔𝑚𝑡 − 𝛼𝑚(𝑚. 𝑡)] = 0   (32) 

In obtaining equation (32), every term in 𝜃2 and other terms in higher powers of 𝜃 have been considered nighgibly 

small. Thus, the corresponding variational equations as obtained from equation (32), have the form 

              − 2𝜔𝑚�̇�(𝑚. 𝑡) − 2𝜆𝑣𝑑3(𝑗. 𝑚)𝛾(𝑚. 𝑡)𝜔𝑚 = 0                                        (33)   

      2𝜔𝑚�̇�𝑚(𝑚. 𝑡) − 𝜔𝑛
22𝜆𝑣𝑑1(𝑗. 𝑘) + 𝑣2𝑑3(𝑗. 𝑚) = 0                                       (34) 

Solving equations (33) and (34), we have           �̇�(𝑚, 𝑡) =
𝑃0𝑒−𝑞0𝑡                                                                                                    (35)         �̇�(𝑚. 𝑡) = 𝑃0𝑒−𝑞0𝑡cos (𝜌𝑚𝑡 −
𝐼𝑚)                                                                      (36) 

where 𝑃0, 𝑞0, 𝐼𝑚 are constants, and, 

                   𝜌𝑚 = 𝜔𝑚 [1 −
𝜆

2
(𝑑1(𝑗, 𝑘) −

𝑣2𝑑3(𝑗,𝑘)

𝜔𝑚
2 )]                                                        (37) 

 

is the particular modified frequency due to the presence of the effect of the moving mass of the load. Thus, the 

differential operator which acts on 𝛼𝑚(𝑚. 𝑡) and 𝛼𝑘(𝑘. 𝑡) on equation (25) as earlier mentioned, is thereby replaced 

by the equivalent free system operator defined by the modified frequency, ρ𝑚. As a result, equation (25) reduces to 

          �̈�𝑚(𝑚, 𝑡) +  𝜌𝑚
2 𝛼𝑚(𝑚. 𝑡) = 𝜃1𝑔𝐿𝑉𝑚(𝑣𝑡)                                                       (38) 

It is therefore, remarked that equations (38) and (26) respectively, are the simplified version of the original system for 

which interconnected nonlinear variable viscoelastic Winkler layer have been neglected. However, if the inner layer 

have been retained, the obtained transformed second order ordinary differential equations of the dynamic Euler-

Bernoulli beams simplifies to,  

         �̈�𝑚(𝑚. 𝑡) + 𝜌𝑚
2 𝛼𝑚(𝑚, 𝑡) +

𝑐

𝜇
[𝛼𝑚(𝑚, 𝑡) − 𝛽𝑚(𝑚, 𝑡)] 

              +𝑘3(𝑥)[𝛼𝑚(𝑚, 𝑡) − 𝛽𝑚(𝑚, 𝑡)] +  𝑘4(𝑥)[𝛼𝑚(𝑚, 𝑡) − 𝛽𝑚(𝑚, 𝑡)] 

                       +
𝜀0

𝜇
[�̇�𝑚(𝑚, 𝑡) − �̇�𝑚(𝑚, 𝑡)] = 𝜃1𝑔𝐿𝑉𝑚(𝑣𝑡)                                     (39)      

        �̈�𝑚(𝑚. 𝑡) + 𝜔𝑚
2 𝛽𝑚(𝑚, 𝑡) +

𝑐

𝜇
[𝛽𝑚(𝑚, 𝑡) − 𝛼𝑚(𝑚, 𝑡)] 

+𝑘3(𝑥)[𝛽𝑚(𝑚, 𝑡) − 𝛼𝑚(𝑚, 𝑡)] +  𝑘4(𝑥)[𝛽𝑚(𝑚, 𝑡) − 𝛼𝑚(𝑚, 𝑡)] 
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                +
𝜀0

𝜇
[�̇�𝑚(𝑚, 𝑡) − �̇�𝑚(𝑚, 𝑡)] = 𝑂                                                                (40) 

DIFFERENTIAL TRANSFORM METHOD 

Based on the previous studies [], the iterative 

procedure of differential transform method have been 

deployed to simplify various differential equations due 

to vibration problems in engineering applications. 

Hence, the convenience of the method have been 

employed to solve the reduced transformed second 

order ordinary differential equations (39) and (40). 

The procedure involves considering the 𝑘𝑡ℎ derivative 

of a time function 𝛼𝑚(𝑚, 𝑡) such that,
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          �̅�𝑚(𝑘) =
1

𝑘!
[
𝑑𝑘𝛼𝑚(𝑚, 𝑡)

𝑑𝑡𝑘
]

𝑡=𝑡0

                                                                        (41)  

The inverse differential transform of  �̅�𝑚(𝑘) is 

            𝛼𝑚(𝑚, 𝑡) = ∑ �̅�𝑚(𝑘)(𝑡 − 𝑡0)𝑘

∞

𝑘=0

                                                                  (42)   

At  𝑡0 = 0, equations (41) and (42) becomes 

           𝛼𝑚(𝑚, 𝑡) = ∑
𝑡𝑘

𝑘!
[
𝑑𝑘�̅�𝑚(𝑚, 𝑡)

𝑑𝑡𝑘
]

𝑡=𝑡0

                                                           (43)  

∞

𝑘=0

 

It has been established that, in practical applications, the result in equation (43) is finite, and it can be expressed as 

           𝛼𝑚(𝑚, 𝑡) = ∑ �̅�𝑚(𝑘)

T

𝑘=0

𝑡𝑘                                                                                  (44) 

such that  ∑ �̅�𝑚(𝑘)𝑡𝑘∞
𝑘=T+1  is considered negligibly insignificant. 

Table 1:  Basic Theorem of Differential Transform Method for Equations of Motion 

𝑢(𝑡) + 𝑣(𝑡) 𝑈(𝑘) + �̅�(𝑘) 

𝑐𝑢(𝑡) 𝑐𝑈(𝑘) 

𝑑𝑢(𝑡)

𝑑𝑡
 

(𝑘 + 1)𝑈(𝑘 + 1) 

𝑑𝑛𝑢(𝑡)

𝑑𝑡𝑛
 

(𝑘 + 1)(𝑘 + 2) … (𝑘 + 𝑛 − 1)(𝑘 + 𝑛)𝑈(𝑘 + 𝑛) 

𝑡𝑚 𝛿(𝑘 − 𝑚) = ⦃0,𝑘≠𝑚
1,𝑘=𝑚

 

𝑠𝑖𝑛𝑎𝑡 1

𝑘!
𝑎𝑘𝑠𝑖𝑛 (

𝑘𝜋

2
) 

 

𝑐𝑜𝑠𝑎𝑡 

 

1

𝑘!
𝑎𝑘𝑐𝑜𝑠 (

𝑘𝜋

2
) 

 

𝑠𝑖𝑛ℎ𝑎𝑡 1

2𝑘!
[(𝑎)𝑘 − (−𝑎)𝑘] 

 

𝑐𝑜𝑠ℎ𝑎𝑡 1

2𝑘!
[(𝑎)𝑘 + (−𝑎)𝑘] 

 

Applying the Table 1 to equations (39) and (40), the obtained recurrence relations are 

   �̅�𝑚(𝑘 + 2) =
1

(𝑘+1)(𝑘+2)
[𝑅1

1

𝑘!
(

𝑚𝜋𝑣

𝐿
)

𝑘

𝑠𝑖𝑛 (
𝑘𝜋

2
) − 𝜌𝑚

2 �̅�𝑚(𝑘) − 𝑄1�̅�𝑚(𝑘) +                            𝑄1�̅�𝑚(𝑘) −

𝑁1(𝑘 + 1)�̅�𝑚(𝑘 + 1) + 𝑁1(𝑘 + 1)�̅�𝑚(𝑘 + 1)]     (45) 

   �̅�𝑚(𝑘 + 2) =
1

(𝑘 + 1)(𝑘 + 2)
[𝑄1�̅�𝑚(𝑘) − 𝜔𝑚

2 �̅�𝑚(𝑘) − 𝑄1�̅�𝑚(𝑘) − 𝑁1(𝑘 + 1)�̅�𝑚(𝑘 + 1)

+  𝑁1(𝑘 + 1)�̅�𝑚(𝑘 + 1)]                     (46) 

 

 

 

 

 



 

149 
 

Equations (45) and (46) have been solved in view of the following transformed initial conditions. 

                 �̅�𝑚(0) = 0 = �̅�𝑚(1)                                                                                       (47) 

                 �̅�𝑚(0) = 0 = �̅�𝑚(1)                                                                                        (48) 

On substituting equations (47) and (48) appropriately for 𝑘 = 0, 1, 2, 3, … into the recurrence relations (45) and (46), 

using “MAPLE 18”, the obtained results are, 

              �̅�𝑚(2) = 0                                                                                                                      (49)                 �̅�𝑚(2) =
0                                                                                                                       (50) 

              �̅�𝑚(3)  =   
𝑅1

3!
(

𝑚𝜋𝑣

𝐿
)                                                                                                  (51) 

              �̅�𝑚(3)  = 0                                                                                                                      (52) 

              �̅�𝑚(4)  = −
𝑁1𝑅1

4!
(

𝑚𝜋𝑣

𝐿
)                                                                                           (53) 

              �̅�𝑚(4)  =  
𝑁1𝑅1

4!
                                                                                                               (54) 

             �̅�𝑚(5)  =  
𝑅1

5!
𝜓𝑚[2𝑁1

2 − (𝜓𝑚
2 + 𝜌𝑚

2 ) − 𝑄1]                                                            (55) 

             �̅�𝑚(5)  =  
𝑅1

5!
𝜓𝑚[𝑄1 − 2𝑁1

2]                                                                                       (56) 

             �̅�𝑚(6)  =  
𝑁1𝑅1

6!
𝜓𝑚[4(𝑁1

2 − 𝑄1) − 𝜌𝑚
2 − (𝜓𝑚

2 + 𝜌𝑚
2 )]                                        (57) 

             �̅�𝑚(6)  =  
𝑁1𝑅1

6!
𝜓𝑚

2 [4(𝑁1
2 − 𝑄1 − 𝜔𝑚

2 − (𝜓𝑚
2 + 𝜌𝑚

2 ))]                                      (58)  

Considering the results in equations (49) – (58) and in conjunction with the transformed initial conditions, the inverse 

differential transform in equation (44) is adequately applied. The resulting equatiottttns are, 

 

  𝑊1(𝑥, 𝑡) = ∑
𝑅1𝜓𝑚

(𝜓𝑚
2 − 𝜌𝑚

2 )
{

(𝜓𝑚
2 − 𝜌𝑚

2 )

3!

∞

𝑚=1

𝑡3 −
𝑁1(𝜓𝑚

2 − 𝜌𝑚
2 )

4!
𝑡4 

                       + 
(𝜓𝑚

2 −𝜌𝑚
2 )

2

5!
[

2𝑁1
2

(𝜓𝑚
2 −𝜌𝑚

2 )
−

(𝜓𝑚
2 +𝜌𝑚

2 )

(𝜓𝑚
2 −𝜌𝑚

2 )
−

𝑄1

(𝜓𝑚
2 −𝜌𝑚

2 )
] 𝑡5 +  

             −  
𝑁1(𝜓𝑚

2 −𝜌𝑚
2 )

2

6!
[

4(𝑁1 −𝑄1)

(𝜓𝑚
2 −𝜌𝑚

2 )
−

𝜌𝑚
2

(𝜓𝑚
2 −𝜌𝑚

2 )
−

(𝜓𝑚
2 +𝜌𝑚

2 )

(𝜓𝑚
2 −𝜌𝑚

2 )
] 𝑡6 + ⋯ } sin

𝑛𝜋

𝐿
𝑥      (59)    

𝑊2(𝑥, 𝑡) = ∑
𝑅1𝜓𝑚

(𝜓𝑚
2 − 𝜌𝑚

2 )
{

𝑁1(𝜓𝑚
2 − 𝜌𝑚

2 )

4!

∞

𝑚=1

𝑡 4 

    −
(𝜓𝑚

2 − 𝜌𝑚
2 )2

5!
[

𝑄1

(𝜓𝑚
2 − 𝜌𝑚

2 )
−

2𝑁1
2

(𝜓𝑚
2 − 𝜌𝑚

2 )
] 𝑡5 −

𝑁1(𝜓𝑚
2 − 𝜌𝑚

2 )2

6!
 

                 × [
4(𝑁1

2 − 𝑄1)

(𝜓𝑚
2 − 𝜌𝑚

2 )
 −

𝜔𝑚
2

(𝜓𝑚
2 − 𝜌𝑚

2 )
−

(𝜓𝑚
2 + 𝜌𝑚

2 )

(𝜓𝑚
2 − 𝜌𝑚

2 )
] 𝑡6

 
+ ⋯ } sin

𝑚𝜋

𝐿
𝑥    (60) 

Hence, equations (59) and (60) respectively, denote the dynamic lateral responses of the upper and lower simply 

supported Euler-Bernoulli beams with a non-linear variable viscoelastic interconnected layer of which is excited by a 

moving mass of constant magnitude. 
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Figure 2(a): Graph of deflection against time at various 

velocities for the upper beam due to moving mass 

 

 

Figure 2(b): Graph of deflection against time at various 

velocities for the upper beam due to moving force 

 

 

 

Figure 3(a): Graph of deflection against time at various 

velocities for the lower beam due to moving mass 

 

 

Figure 3(a): Graph of deflection against time at various 

velocities for the lower beam due to moving force 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4(a): Graph of deflection against 

time varying the mass of the load for the 

upper beam 
 

Figure 4(b): Graph of deflection against time 

varying the mass of the load for the lower  

beam 
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RESULT AND DISCUSSION 

Without loss of generality, it is assumed that the two 

uniform elastically restrained end Euler-Bernoulli 

beams are geometrically and physically identical. 

Numerical results are presented in graphical form and 

discussed. The individual effects of various 

parameters such as load mass and velocity (𝑣) of the 

concentrated moving load, elastic parameter (𝜀0) and 

stiffness parameter of the interconnected layer (𝑘1) on 

the dynamic  response of the simply supported double 

Euler-Bernoulli beam system traversed by a moving 

mass are examined and discussed. A computer 

program has been run for the following numerical data 

due to Mirzebeigy et al (2016). Figures 2(a) and 2(b) 

presents the influence of velocity on the traverse 

deflection of both upper and lower Euler-Bernoulli 

beams. The plots indicate that increase velocity to a 

decrease in the response amplitude is greater in the 

case involving lower beam due to moving force. 

Figure 3(a) and 3(b) represents the effect of variation 

of velocity on the traverse deflection of the upper 

Euler-Bernoulli due to moving mass and moving force 

respectively. It is noticeable that increasing the 

moving speed of the load caused an increase in the 

response amplitude of upper beam due to moving mass 

and force. The absolute maximum response amplitude 

is observed to be greater in the case due to moving 

force. Figure 4(a) and 4(b) presents the influence of 

mass ratio on the traverse deflection of both upper and 

lower Euler-Bernoulli beams. The plots indicate that 

increasing mass ratio to a decrease in the response 

amplitude of both upper and lower beams. However, 

the absolute maximum response amplitude is greater 

in the case involving lower beam due to moving force. 

In figures 5(a) and 5(b) depicts the effects of stiffness 

parameter on the dynamic response of both the upper 

and lower Euler-Bernoulli beam due to moving mass 

and moving force. It is observed that the dynamic 

response of the beam increases as the speed of the load 

increases. 

 

CONCLUSION 

The problem concerning the dynamic responses of two 

parallel elastic Euler-Bernoulli beams interconnected 

through a nonlinear variable viscoelastic Winkler-type 

layer under a moving concentrated load has been 

analyzed. The effect of the inertia of the moving load 

is the major concern of the study. The solution 

technique employed involve a variable separable 

method which has been used to reduce the fourth order 

partial differential equations characterizing  the 

motion of the system to a set of coupled second order 

ordinary differential equations. The decoupling is 

attained by introducing an asymptotic method of 

Struble which has aided the simplification process 

thereby yielding a set of uncoupled second order 

ordinary differential equations of motion. The 

resulting equations is solved rising DTM. 

Based on the analysis conducted so far, the effect of 

the various individual parameters such as constant 

load mass, velocity of the moving load, variable elastic 

parameter stiffness layer on the transverse deflections 

   
Figure 5(a): Graph of deflection against time 

varying the stiffness parameter at a constant 

velocity for the upper beam due to moving 

mass 

 

 

 

 

 

 

 

 

 

 

Figure 5(b): Graph of deflection against time 

varying the stiffness parameter at a constant 

velocity for the upper beam due to moving 

force 
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of both the upper and lower beams were examined. 

The following were the main findings: 

Increasing the speed of the moving load is seen to 

cause an increase in the response amplitude of 

Euler-Bernoulli beam due to moving mass. The 

same trend is observed for the lower beam due to 

moving mass. Also, it is observed that an increase 

in the speed of the moving load has caused an 

increase in the response amplitude of deflection of 

both the upper and lower beams due to moving 

force. 

 

Increase the mass ratio of both the upper and 

lower beams it is seen to cause a decrease in the 

response amplitude of deflections of the two 

beams. However, the amplitude of deflections due 

to the upper beam is higher while reverse is the 

case in the lower beam. 

 

Increase the stiffness parameter of the linear 

interconnected layer led to an increase in the 

response amplitude of the deflections of the lower 

beam due to moving force. However, this 

variation of stiffness parameter, has produced the 

same response of deflection on the lower beam 

due to moving force. 

 

Increasing the stiffness parameter of the linear 

interconnected layer is observed to cause an 

increase in the response amplitude of deflection of 

the lower beam due to moving mass. This 

variation of stiffness parameter, has produced the 

same response of deflection on the lower beam 

due to moving mass. 

 

 

REFERENCES 

Fryba, L. (1972). Vibration of Solids and Structures 

under Moving Loads. Research Institute of 

Transport. Mechanics of Structural Systems, 

Springer, Dordrechi, Netherlands.  

Seeling J.M. and Hoppmann W.H. (2011). Impact on 

an elastically connected double-beam 

system “Journal of Applied Mechanics”  31: 

621 – 626 

Stojanovic V., Kozic P. Pavlovic R. and Janevski G. 

(2011). Effect of rotatory inertia shear on 

vibration and buckling of a double beam 

system under compressive axial loading. 

“Archive Applied Mechanics” 81(12); 1993 

– 2005. 

Abu-Hilal, M. (2006). Dynamic response of double 

Euler-Bernoulli beams due to moving 

constant load.                                  Journal 

of sound and vibration. 2(97), 277 – 491. 

Agboola, O.O. & Gbadeyan, J.A. (2015). Dynamic 

Behavior of a double Rayleigh beam system 

due to uniform partially distributed moving 

load. Journal of Applied Science Research. 

8(1), 571 – 881. 

Amin, G. (2017). Analytical study of Dynamic 

Responses of Railway on Partial Elastic 

Foundation Under Traveling Acceleration 

Concentrated Load. International Journal of 

Transportation Engineering. 4(4), 317 – 334. 

Birol, I. (2014). Application of reduced Differential 

Transformation Method for solving Fourth-

Order Parabolic Partial Differential Equation. 

Journal of Mathematics and Computer 

Science. 1(2), 124 – 13. 

Gbadeyan, J.A. &  Agboola, O.O. (2012). Dynamic 

behavior double-Rayleigh beam system due 

to uniform partially distributed moving load. 

Journal of Applied Sciences Research. 8(1), 

571 – 281. 

Gbadeyan, J.A., Hammed, F.A.  & Titiloye, E.O. 

(2005). Dynamic behavior of viscoelastically 

connected beams carrying uniform partially 

distributed moving force. Nigeria Journal of 

Pure Apply Sciences. 20(4), 1891 – 1905. 

Li, Y.X., Hu Z.J. & Sun L.Z (2016).Dynamic behavior 

of a double-beam system interconnected by a 

viscoelastic layer. International Journal of 

Mechanical Sciences. 10(5),291 – 303. 

Li, J. & Hua, H. (2007). Spectral Finite Element 

Connected Double-Beam Systems Finite 

Elements in Analysis and Design. 43(15), 

1155 – 1168. 

Mao, Q. (2012). Free Vibration Analysis of Elastically 

Connected Multiple-Beam by using the A 

Domain Modified Decomposition Method. 

Journal of Sound and Vibration. 331(11), 

2232 – 2542. 



 

153 
 

Mirzabeigy, A. & Madoliat, R. (2015). Free Vibration 

Analysis of Partially Connected parallel 

Beams with Elastically Restrained Ends. 

Journal of Mechanical Engineer Science. 

230(16), 2851 – 286. 

Mirzabeigy, A., Madoliat, R. & Vahabi M. (2016). 

Free vibration analysis of two parallel beams 

connected together through variable stiffness 

elastic layer with elastically restrained ends. 

Advances in Structural Engineering, 20(3), 

275 – 287. 

Mirzabeigy, A. & Madoliat, R. (2019). A note of Free 

vibration of a double-beam system with 

nonlinear elastic inner layer Journal of 

Applied and Computational Mechanics. 5(1), 

174 – 180. 

Mohammadi, N. & Nasirshoaibi, M. (2015). Forced 

Transverse Vibration Analysis Of  A 

Rayleigh Double-Beam System with A 

Pasternak-middle layer subject to 

Compressive axial Load. Journal of 

vibroengineering. 17(8), 4545 – 4559. 

Oniszczuk, Z. (2000). Free Transverse Vibration of 

Elastically Connected Simply supported 

Double-Beam Complex System. Journal of 

Sound and Vibration. 23(2), 387 – 403. 

Saifur, R. & Lee, Y.Y. (2017). New modified multi-

level residue harmonic balance method for 

solving nonlinear vibrating double-beam 

problem. Journal of Sound and Vibration. 

406, 295 – 327. 

Vahabi, M. & Madoliat, R. (2017). Free Vibration of 

two Parallel Beams Connected together 

through variable stiffness Elastic Layer with 

Elastically Restrained Ends. Advances in 

Structural Engineering 20(3), 275 – 287. 

Zhou, J.K. (1986). Differential transformation and its 

application for electric circuit. Hauzhong 

University Press, Wuhan.

 


