
Ayogu B. A. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 
 

111 
 

PERFORMANCE EVALUATION OF HYBRID AND STANDALONE 
TECHNIQUES ON WEB APPLICATIONS BASED CROSS-SITE SCRIPTING 

ATTACKS 
1*Ayogu B. A., 2Ogunleye G. O., 3Benjamin T. F. and 4Ugwu J.N.  

 
 1,2,,3,4Department of Computer Science, Federal University Oye Ekiti, Nigeria 

Corresponding Author, email: bosede.ayogu@fuoye.edu.ng 
 

ABSTRACT  

Cross-Site Scripting (XSS) is a type of malicious scripts that are broadcasted on the web applications through 

Hyper Text Transfer Protocol (HTTP). There are three categories of XSS: persistent, reflected, and Document 

Object Model DOM-based (Document Object Model). In the persistent attack, the malicious code is stored into 

the database and execute on every browser that loads the infected webpage. For the reflected attack, the user 

is tricked into submitting a form that sends malicious code to the victim’s browser, while DOM-based attack is 

done by manipulating the user’s DOM environment, which does not affect the HTTP response and the web 

server but the client side of the affected user. To shield users against data theft, this research targets to improve 

the detection accuracy of cross-site scripting attacks in web applications. The dataset underwent pre-

processing. Pearson Correlation technique was used to choose sixty correlated features of sixty-eight features 

for the research. The efficacy of the CNN-LSTM hybridized approach and their standalone were demonstrated 

and evaluated using accuracy criteria. Experimental results recorded 99.87% for both hybrid and LSTM 

approaches respectively with margin of 0.1 lower than CNN, but higher in terms of other metrics, implying 

that all the approaches can be used for the detection of cross-site scripting attacks. 

Keywords:  CNN, Feature selection, LSTM, Security vulnerabilities, XSS Dataset.

INTRODUCTION 

Web applications are popular software that can be 

used conveniently, and are accessible from any 

device with an internet connection. To access a web 

application over the internet, HTTP is the general 

protocol designed for this purpose. Web applications 

are developed in such a way that allows a large 

number of users to access it simultaneously without 

facing compatibility issues (Indeed Editorial, 2022). 

Categories of organization that use web application 

include, banking, education, and social media, which 

are trusted by millions of users. A web application 

with security vulnerability will always create risk for 

the application’s users (Mack et al., 2019). Cross-

Site Scripting (XSS) is among the common attacks 

found to take advantage of vulnerabilities in web 

applications. This type of attack occurs when an 

attacker injects malicious code to compromise the 

interactions with users thereby taking advantage of 

the vulnerable application. The code can be executed 

to steal users’ personal information such as cookies 

and sensitive data, and redirect users to dangerous 

websites (Gupta, & Gupta, 2017). The existence of 

XSS vulnerabilities can be traced back to when 

JavaScript was introduced for client-side application 

development which allows developers to create 

dynamic webpages that only execute on the client end 

(Garcia-Alfaro & Navarro-Arribas (2007); Aliga et 

al. (2018)). The development gave developers the 

ability to embed scripts inside webpages to perform 

a task such as validation of input form, adding 

interactive behaviours to webpages, and it reduces 

the load on the server (Guha et al., 2010). Attackers 

use the advantage of the scripting language to inject 

LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 



Ayogu B. A. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 
 

112 
 

malicious code into vulnerable web applications 

which are executed to steal users’ sensitive data. 

Cross-site scripting (XSS) attacks are of three types, 

namely: persistent, reflected, and document object 

model (DOM)-based. A persistent XSS attack occurs 

when malicious code is stored in a vulnerable web 

application's database and loaded onto every web 

browser that accesses the affected webpage. An 

example of this type of attack is when an attacker 

posts malicious code on their profile page on a social 

media application, and the code is saved in the 

database (Gupta & Gupta, 2017), whenever another 

user loads the infected webpage, the attacker is able 

to manipulate the victim's interaction with the 

webpage. The attacker can steal the victim’s 

information like email passwords and other social 

media applications' login credentials. 

In a reflected XSS attack, the victim is tricked into 

clicking a link or submitting a form and the injected 

malicious code is sent to the victim’s web browser as 

a response to the server. In this type of attack, 

malicious code is not stored in the vulnerable web 

server but travelled through the web application 

uniform resource locator (URL) (Mack et al, 2019 

and Gupta & Gupta, 2017) and executes on the 

victim’s web browser. Attackers target web pages 

error messages or search results to inject their 

malicious codes.  

 

DOM-based XSS attack is therefore when a 

malicious code is executed by manipulating the 

DOM environment in the victim’s browser. In this 

type of attack, HTTP response is not changed neither 

is the web application server is affected. 

Modification is only done on the client side of the 

affected user, which can result to unexpected actions 

such as redirection to harmful websites 

(Parameshwaran et al, 2015).  

The existence of vulnerabilities in web application 

can expose web users to attackers which steal 

sensitive information and cause unexpected 

damages. There are several available approaches to 

mitigate the effect of cyber-attacks in web 

applications, which have recorded high degree of 

positive outcomes (Isam et al, 2023 and Kumar & 

Ponsam, 2023). This research takes into 

consideration two deep learning methods (CNN and 

LSTM), implement them independently for the 

detection of cross-site scripting attacks in web 

applications to protect users from information thefts 

and also combine the standalone systems to have a 

hybrid system for checking the efficacy of the 

proposed deep learning methods using various 

standard metrics. 

LITERATURE REVIEW 

This section provides the existing researches on 

cross-site scripting attacks in web applications. 

Kadhim and Gaata (2020) combined CNN and 

LSTM to identify XSS in web applications. The XSS 

dataset was pre-processed and tokenized for 

Word2Vec. The experiments performed on this 

method yielded an accuracy rate of 99.4%. Alquari et 

al (2022) proposed a modular neural network to 

reduce the false-positive rate in the detection of XSS 

attacks in web application, to distinguish Benign 

words and Malicious words from the text payload, 

Word to Vector (Word2vec) and Continuous Bags of 

Words (CBOW) Models were employed. Fifty (50) 

features were used in this research. The experimental 

result showed that the proposed method achieved an 

accuracy of 99.96%.  (Odun_Ayo, 2021) proposed a 

deep learning approach to build a secure system that 

can identify and stop cross-site scripting attacks in 

cloud-based web applications. A web application was 

developed with multi-layer perceptron deep learning 

model embedded on the server-side of the web 

application and hosted on the cloud. The 

experimental result of the system showed 99.47% 



Ayogu B. A. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 
 

113 
 

accuracy and 0.99% false-positive rate. Their future 

work is to further develop the model to counter and 

prevent other web-based attacks. 

Mack et al. (2019) developed a simulation 

environment using XAMPP (XAMPP Apache + 

MariaDB + PHP + Perl) and VirtualBox to test four 

different types of XSS attacks: persistent, reflected, 

cookie-stealing, and keylogging. On a webpage 

hosted locally, each XSS attack was launched and 

analyzed both quantitatively and qualitatively. The 

evaluations were carried out using NIST CVSS 3.0 

ratings, which identified whether the attack breaches 

integrity, availability, and confidentiality. To access 

the attacks, Base Score (BS) algorithm was used to 

calculate the scores for each attack. The BS formula's 

results revealed that a reflexed attack has the lowest 

effect, while keylogging has the highest effect. Their 

future work is to conduct similar studies on 

additional XSS variants. Garcia-Alfaro & Navarro-

Arribas (2007) developed an intelligent tool for the 

detection of cross-site scripting defects in web 

applications. The implementation was carried out 

based on fuzzy logic. The system was tested on seven 

sources which XSS vulnerabilities can be introduced 

to web applications. The implemented system 

showed 95% accuracy and 0.99% false-positive rate. 

Their future work is to involve more DOM-based 

features that could lead to server-side injection 

vulnerabilities. 

A system that can detect a malicious script and 

preventing it from storing it on the server was 

developed by Mereani & Howe (2018). The system 

was based on the mixture of classifiers using 

cascading to build a two-phase classifier and the 

stacking ensemble technique to improve detection 

accuracy. The initial phase of the classifier was to 

differentiate between plain text and script text. It 

retuned 100% accuracy, that is, no script text was 

classified as plain text. The second phase used 

Support Vector Machine as the meta level classifier 

and scored 99% accuracy. The limitation of the 

system is the inability to detect Base64 encoding. All 

the presented reviewed researches need for further 

research on XSS detection based on the provided 

limitations that affect the classification of the models. 

Thus, this is the motivating factor for this research. 

METHODOLOGY 

The methodology used in achieving the proposed 

systems is given in this section, which is divided into 

phases such as data description, feature selection, and 

experimental analysis of both standalone, and hybrid 

systems. Having a standalone system means that each 

of the deep learning approaches employed in this 

research are implemented independently without 

being bundled with one another, whist the hybrid 

approach requires bundling the two systems to 

achieve a common goal. The research employed 

CNN, and LSTM deep learn approaches to achieve 

the standalone, while the combination of both with 

sequential algorithm were used to form the hybrid 

method for detecting the XXS in web application. 

System architecture 

The architectural design of the proposed systems is 

shown in figure 1, comprising all the processes 

involved in the experimental analysis of the 

classification systems.  

Data gathering and preprocessing 

The study used a cross-site scripting dataset that was 

collated by Mokbal (2021). The dataset consists of 

one hundred and one thousand (101000) instances, 

split into training dataset and testing sets.  

 



Ayogu B. A. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 
 

114 
 

 

Figure 1. - Architecture of the proposed system 

The training dataset consists of eight thousand and 

eight hundred thousand (80800) instances, which 

seven hundred and ninety-five (795) are attack 

instances, and eighty thousand and five (80005) are 

benign instances. The testing dataset consists of two 

thousand and two hundred (20200) instances, which 

two hundred and five (205) are attack instances, and 

nineteen thousand nine hundred and ninety-five 

(19995) are benign instances. The dataset sample is 

presented in Table 1.  

Table 1: Samples of the datasets 

 Training Testing 

Attack 795 205 

Benign 80005 19995 

Total 80800 20200 

 

 

EXPERIMENTAL ANALYSIS 

To make the data suitable for building and training 

deep learning models, there was a need for data 

cleaning and organizing which involves 

preprocessing such as decoding, generalization, and 

feature selection.  To bypass traditional validation 

methods relying on regular expressions, attackers can 

encode their malicious codes using techniques such 

as URL encoding, Unicode encoding, Hex encoding, 

HTML entity encoding, among others. Therefore, 

this study employed a decoder capable of 

transforming encoded text into its normal textual 

representation. To handle data redundancy, decoded 

data is generalized by eliminating blank characters, 

“http://”, https://, and www, this process sanitizes the 

data. To select the relevant features suitable for the 

classification systems, this research used a set of 

expressions for data categorization based on the 

scripting features. Pearson’s Correlation method was 

used to evaluate the strength of relationship between 

features which ranges between -1 and +1. Thereafter, 

the selected features are input to the CNN and LSTM 

classification systems which were further combined 

to build a hybrid CNN-LSTM classification system 

for comparison purpose. The mathematical 

representations of the models employed in this 

research are given in equation 1 to 15. 

Pearson’s Correlation 

𝑝 =
௡(∑ ௠௝)ି(∑ ௠)(∑ ௝)

ඥ[௡ ∑ ௠మି(∑ ௝)మ] [௡ ∑ ௠మି(∑ ௝)మ]
       (1) 

𝑤ℎ𝑒𝑟𝑒 

𝑝 = 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑖𝑟𝑠  

෍ 𝑚𝑗 = 𝑠𝑢𝑚 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑖𝑟𝑠  

෍ 𝑚 = 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑚 𝑠𝑐𝑜𝑟𝑒𝑠  

෍ 𝑗 = 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑗 𝑠𝑐𝑜𝑟𝑒𝑠  

෍ 𝑚ଶ = 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑚 𝑠𝑐𝑜𝑟𝑒𝑠  



Ayogu B. A. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 
 

115 
 

෍ 𝑗ଶ = 𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑗 𝑠𝑐𝑜𝑟𝑒𝑠 

 

Sixty (60) out of seventy-seven (67) features were 

selected for the proposed system using Pearson’s 

Correlation.  

Convolutional neural networks (CNN) 

Convolutional Neural Networks was motivated by 

the neurons in human brains. It is the most popular 

and used algorithm because of its ability to identifies 

important features without human interference 

(Mokbal, and Alzubaidi et al, 2021). Convolutional 

neural networks (CNNs) consist of multiple layers, 

including an input layer, convolutional layers, 

pooling layers, and an output layer. The input layer 

serves as the entry point for the image being 

processed. Convolutional layers extract the image 

features. Pooling layers, on the other hand, help to 

down-sample the feature map to reduce its 

dimensionality. Finally, the output layer performs the 

classification or recognition task. 

The mathematical notation for convolution is 

commonly denoted using an asterisk (*). When an 

input image is represented as L and a filter is 

represented as F, the equation for this operation 

would be written as: 

𝑂 = 𝐿 ∗ 𝐹             (2) 

𝑊ℎ𝑒𝑟𝑒 𝑂 = 𝑂𝑢𝑡𝑝𝑢𝑡  𝐿 = 𝐼𝑛𝑝𝑢𝑡 𝐿𝑎𝑦𝑒𝑟, 𝑎𝑛𝑑  

𝐹 = 𝐹𝑖𝑙𝑡𝑒𝑟/𝐾𝑒𝑟𝑛𝑒𝑙 

The filter iterates through different sections or 

patches of the image, multiplies the values of the 

elements of the filter and the image by each other 

element and then computes the sum of the resulting 

product. The calculation can be shown below: 

 

  

 

The calculation can be shown below: 

𝑂ଵ =  𝐵ଵ + (𝐿ଵ ∗  𝐹ଵଵ) + (𝐿ଶ ∗ 𝐹ଵଶ) + (𝐿ଷ ∗ 𝐹ଵଷ) (3) 

𝑂ଶ =  𝐵ଶ + (𝐿ଵ ∗  𝐹ଶଵ) + (𝐿ଶ ∗ 𝐹ଶଶ) + (𝐿ଷ ∗ 𝐹ଶଷ) (4) 

𝑂ଷ =  𝐵ଵ + (𝐿ଵ ∗  𝐹ଷଵ) + (𝐿ଶ ∗ 𝐹ଷଶ) + (𝐿ଷ ∗ 𝐹ଷଷ) (5) 

𝑂ௗ =  𝐵ௗ + (𝐿ଵ ∗  𝐹ௗଵ) + (𝐿ଶ ∗ 𝐹ௗଶ) + (𝐿ଷ ∗ 𝐹ௗଷ)  

                                                                               (6) 

The example above has the input with a shape of (3, 

3) and the filter has a shape of (2, 2). Given these 

dimensions for the image and filter, the output matrix 

will have a shape of (2, 2). Concisely, 

𝑂௜ =  𝐵௜ +  ∑ 𝐿௝ ∗  𝐹௜௝
௡
௝ୀଵ , 𝑖 = 1 … 𝑑       (7) 

⎣
⎢
⎢
⎢
⎡
𝑂ଵ

𝑂ଶ

𝑂ଷ

⋮
𝑂ௗ⎦

⎥
⎥
⎥
⎤

= 

⎣
⎢
⎢
⎢
⎡
𝐵ଵ

𝐵ଶ

𝐵ଷ

⋮
𝐵ௗ⎦

⎥
⎥
⎥
⎤

+  

⎣
⎢
⎢
⎢
⎡
𝐹ଵଵ 𝐹ଵଶ 𝐹ଵଷ ⋯ 𝐹ଵ௡

𝐹ଶଵ 𝐹ଶଶ 𝐹ଶଷ ⋯ 𝐹ଶ௡

𝐹ଷଵ 𝐹ଷଶ 𝐹ଷଷ ⋯ 𝐹ଷ௡

⋮ ⋮ ⋮ ⋮ ⋮
𝐹ௗଵ 𝐹ௗଶ 𝐹ௗଷ ⋯ 𝐹𝑑𝑛⎦

⎥
⎥
⎥
⎤

∗  

⎣
⎢
⎢
⎢
⎡
𝐿ଵ

𝐿ଶ

𝐿ଷ

⋮
𝐿௡⎦

⎥
⎥
⎥
⎤

 

                                                                                (8) 

In a simple equation, 

 𝑂 = 𝐵 + 𝐹 ∗ 𝐿                        (9) 

CNN-LSTM 

LSTM is a variation of RNN and was first introduced 

by Hochreiter and Schmidhuber, with further 

improvements made by other researchers. These 

networks are the most used type of RNN because 

they are found to be effective for a several range of 

problems (Aliga et al, 2018). LSTM networks are 

advanced method for sequence learning. While they 

are not frequently used for time series forecasting, 

they are well-suited for this field due to their ability 

to learn long-term dependencies. The CNN based 

L1 

L2 

L3 

F11 

F12 

F13 

B1 

F21 

F22 

F23 

B2 

O1 

O2 



Ayogu B. A. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 
 

116 
 

LSTM was used to increase the accuracy of the 

network by using the Convolutional Neural Network 

(CNN) one-dimensional three-time and zero padding 

two-time, resulting from concatenation (CNN1, 

CNN2 and CNN3) use in the LSTM. The 

mathematical representation of the theory on how the 

hidden state hs-s time s is determined from the 

previous hidden state hs-1 which is behind the LSTM 

units’ concepts is shown below: 

Input gate is displayed as 

𝑙(𝑠) =  𝛿൫𝑊(𝑙)𝑥(𝑠) + 𝑢(𝑙)ℎ(𝑠 − 1)൯      (10) 

Forget Gate computed as, 

𝑔(𝑠) =  𝛿(𝑊(𝑔)𝑥(𝑠) + 𝑢(𝑔)ℎ(𝑠 − 1)     (11) 

and, Output gate computed as, 

𝑜(𝑠) =  𝛿(𝑊(𝑜)𝑥(𝑠) + 𝑢(𝑜)ℎ(𝑠 − 1)     (12) 

also, the new memory cell as, 

𝑐~(𝑠) = tanh൫𝑊(𝑐)𝑥(𝑠) + 𝑢(𝑐)ℎ(𝑠 − 1)൯    (13) 

overall, the final memory cell is calculated as, 

𝑐(𝑠) = 𝑔(𝑠)𝑜𝑐~(𝑠 − 1) + 𝑙(𝑠)𝑜 𝑐~(𝑠)    (14) 

and, 

ℎ(𝑠) = 𝑜(𝑠)𝑜 tanh (𝑐(𝑠))     (15) 

𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝑡𝑖𝑚𝑒, 𝑎𝑛𝑑 𝑙 = 𝑖𝑛𝑝𝑢𝑡 

The structure of CNN-LSTM network is shown in 

Figure 2: 

RESULTS AND DISCUSSION 

The XSS dataset consist of 101000 instances made 

up of 100000 normal and 1000 attacks instances with 

67 features. The training dataset contains 70% of the 

dataset collated and the testing dataset contains 30% 

of the dataset collated. Pearson’s Correlation method 

was applied on both training and testing sets to 

reduce the input features to 60, whilst the testing 

dataset was further used to determine the efficacy of 

the proposed models.  

 

Figure 2: Structure of CNN-LSTM  

These processes were performed on the hybridized 

model (CNN-LSTM) and each method individually. 

The implementation was done using Python 3.6 

programming language. The confusion matrix for 

both standalone and hybridized methods from python 

library is shown in Figure 3, while Table 2 shows the 

overall performance of the models and its 

corresponding graphs based on the standard metrics 

are given in Figure 4 and 5, respectively. The 

parameters used to evaluate the metrics are; 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

 
்௥௨௘ ௉௢௦௜௧௜௩௘ (்௉)ା்௥௨௘ ே௘௚௔௧௜௩௘ (்ே)

்௉ା்ேାி௔௟௦௘ ௉௢௦௜௧௜௩௘ (ி௉)ାி௔௟  ே௘௚௔௧௜௩௘ (ிே)
       (16) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =  
்௥௨௘ ௉௢௦௜௧௜௩௘ (்௉)

்௥௨௘ ௉௢௦௜௧௜௩௘ (்௉)ାி௔௟௦  ௉௢௦௜௧௜௩௘ (ி௉)
  (17) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
்௥௨௘ ௉௢௦௜௧௜௩௘ (்௉)

்௥௨௘ ௉௢௦௜௧௜௩௘ (்௉)ାி௔௟௦  ே௘௚௔௧௜௩௘ (ிே)
      (18) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
௉௥௘௖௜௦௢௡∗ோ௘௖௔௟௟

௉௥௘௖௜௦௢௡ାோ௘௖௔
      (19) 



Ayogu B. A. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 
 

117 
 

 

Figure 3: Confusion matric for both standalone and hybridize methods 

Table 2: Overall performance of all the models 

Model 

True 

Positive 

(TP) 

False 

Positive 

(FP) 

True 

Negative 

(TN) 

False 

Negative 

(FN) 

Accuracy Precision Recall 
F1-

Score 

CNN-LSTM 

(Hybridized) 
19989 17 188 6 99.87% 99.92% 99.97% 99.95% 

CNN 19978 17 198 7 99.88% 99.91% 99.97% 99.94% 

LSTM 19989 17 188 6 99.87% 98.92% 99.97% 99.95% 

 

The confusion matrix comprises four classes, 

including True Positives (TP) representing correctly 

classified XSS samples, False Positives (FP) 

representing non-XSS samples wrongly classified as 

XSS, True Negatives (TN) indicating appropriately 

classified non-XSS samples, and False Negatives 

(FN) representing XSS samples inappropriately 

classified as non-XSS. For the hybridized model, out 



Ayogu B. A. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 
 

118 
 

of the 19995 of Benign records, 19989 were correctly 

classified, while 17 were misclassified as attacks, 

while the total number of attacks misclassified as 

Benign were 6 out of the 205 attacks present in the 

testing set.  The CNN misclassified 17 and 7 as 

attacks and benign instances, respectively, whilst 

LSTM model recorded the same result as hybridized 

approach achieving 99.87% accuracy which means 

CNN outperformed both methods in terms of 

accuracy achieving 99.88% accuracy. The graphical 

representation of the proposed models based on the 

standard metrics employed in this research are shown 

in Figure 4 and 5, respectively.  

 

Figure 4: Overall performance of all the models 

 

Figure 5: Comparison of models by accuracy 

 

CONCLUSION 

To shield users against data theft, this study offers 

an effective technique to detect cross-site scripting 

attacks in web applications. The proposed method 

was carried out using the Python programming 

language. The experiments were demonstrated on 

the hybridized, and standalone approaches. 

Experimental evaluation performance showed that 

either the hybridized or standalone approaches can 

be used for the detection of cross-site scripting 

attacks effectively. All the models achieved more 



Ayogu B. A. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 
 

119 
 

than 99% performance in terms of the evaluation 

matrics employed in this research.  

REFERENCES 

Aliga, P. A., John-Otumu, A. M., 

Imhanlahimi, R. E., and Akpe, A. C. E (2018). 

Cross Site Scripting Attacks in Web-Based 

Applications. Journal of Advances in Science 

and Engineering, 1(2), 25-35. 

Alqarni, A., Alsharif, N., Khan, N., Georgieva, 

L., Pardede, Eric., Alzahrani, M., and Ahmad, 

N (2022). MNN-XSS: Modular neural 

network-based approach for XSS attack 

detection. Computers, Materials and 

Continua, 70(2), 4075-4085. 

Alzubaidi, L., Duan, Y., Al-Dujaili, A., 

Ibraheem, I. K., Alkenani, A. H., Santamaria, 

J., Fadhel M. A., Al-Shamma, O., and Zhang, 

J. (2021). Deepening into the suitability of 

using pre-trained models of ImageNet against 

a lightweight convolutional neural network in 

medical imaging: An experimental study. Peer 

J Computer Science, 7, e715. 

Ayeni, B. K., Sahalu, J. B. and Adeyanju, K. 

R. (2018). Detecting cross-site scripting in 

web applications using fuzzy inference 

system. Journal of Computer Networks and 

Communications. 

Garcia-Alfaro, J. and Navarro-Arribas, G. 

(2007). Prevention of cross-site scripting 

attacks on current web applications. In On the 

Move to Meaningful Internet Systems 2007: 

CoopIS, DOA, ODBASE, GADA, and IS: 

OTM Confederated International Conferences 

CoopIS, DOA, ODBASE, GADA, and IS 

2007, Vilamoura, Portugal, November 25-30, 

2007, Proceedings, Part II (pp. 1770-1784). 

Springer Berlin Heidelberg. 

Guha, A., Saftoiu, C. and Krishnamurthi, S. 

(2010). The essence of JavaScript. In ECOOP 

2010–Object-Oriented Programming: 24th 

European Conference, Maribor, Slovenia, 

June 21-25, 2010. Proceedings 24 (pp. 126-

150). Springer Berlin Heidelberg. 

Gupta, S. and Gupta, B. B. (2017). Cross-Site 

Scripting (XSS) attacks and defense 

mechanisms: classification and state-of-the-

art. International Journal of System Assurance 

Engineering and Management, 8, 512-530. 

Indeed Editorial Team, (2022) What Is a Web 

Application? How It Works, Benefits and 

Examples,  Retrieved December 16, 2022, 

from https://in.indeed.com/career-

advice/career-development/what-is-a-web-

application 

Kadhim, R. and Gaata, M. (2020). A hybrid of 

CNN and LSTM methods for securing web 

application against cross-site scripting 

attack. Indones. J. Electr. Eng. Comput. 

Sci, 21, 1022-1029. 

Kumar, J. H., and Ponsam, J. J. G. (2023). 

Cross Site Scripting (XSS) vulnerability 

detection using Machine Learning and 

Statistical Analysis. International Conference 

on Computer Communication and Informatics 

(ICCCI), Coimbatore, India. (pp. 1-9). 

Mack, J., Hu, Y. H. F. and Hoppa, M.A. 

(2019). A Study of Existing Cross-Site 

Scripting Detection and Prevention 

Techniques Using XAMPP and VirtualBox. 

Virginia Journal of Science, 70(3), pp. 1-23. 

Mereani, F. A. and Howe, J. M. (2018). 

Detecting cross-site attacks using machine 

learning. In The International Conference on 

Advanced Machine Learning Technologies 



Ayogu B. A. et al. /LAUTECH Journal of Engineering and Technology 17 (2) 2023: 111-120 
 

120 
 

and Applications (AMLTA2018) (pp.200-

210). Springer International Publishing. 

Mokbal, F. M. M (2021). “Cross-site scripting 

attack(XSS) dataset,” Figshare, 2021. 

[Online].Available:https//figshare.com/article

s/dataset/XSS_dataset1_csv/13046138?file=2

4959207. 

Odun-Ayo, I., Toro-Abasi, W., Adebiyi, M., 

and Alagbe, O. (2021). An implementation of 

real-time detection of cross-site scripting 

attacks on cloud-based web applications using 

deep learning. Bulletin of Electrical 

Engineering and Informatics, 10(5), 2442-

2453. 

Parameshwaran, I., Budianto, E., Shinde, S., 

Dang, H., Sadhu, A., and Saxena, P. (2015). 

DexterJS: robust testing platform for DOM-

based XSS vulnerabilities. In Proceedings of 

the 2015 10th Joint Meeting on Foundations of 

Software Engineering (pp. 946-949). 

Thajeel, I. K., Samsudin, K., Hashim, and S. 

J., Hashim, F. (2023). Machine and Deep 

Learning-based XSS Detection Approaches: A 

Systematic Literature Review. Journal of King 

Saud University - Computer and Information 

Sciences, 35(7), 1319-1578 

 


