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ABSTRACT  

This study developed a random forest machine learning model for predicting milling machine failure using 

five input parameters, which include air temperature, process temperature, rotational speed, torque, and tool 

wear. The model utilized a random forest classifier to split the data into 97% for training and 3% for testing, 

generating final results based on majority votes. The random forest model effectively predicts milling machine 

failure with high precision and accuracy, as demonstrated by its performance metrics, including accuracy, 

precision, recall, and F1 values of 0.9853, 0.7129, 0.8276, and 0.7660, respectively. The confusion matrix 

analysis shows the model correctly predicted 2884 no machine failures as true positives (TP) out of 2899 no 

machine failure targets and 15 no machine failures as false positives (FP). In addition, the model predicted 72 

machine failure targets as true negatives (TN) out of 101 machine failure targets, leaving 29 as false negatives 

(FN). The model aids in predicting machine failure likelihood and implementing preventative measures such 

as pre-emptive investigation, maintenance schedule adjustments, and repairs. This improves the efficiency and 

productivity of milling machine operations, reducing unplanned downtime.  
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INTRODUCTION 

Maintenance is an integral part of the production 

strategy for the overall success of an organization. It 

is expected that equipment of this century should be 

more computerized and reliable, in addition to being 

vastly more complex. Further computerization of 

equipment would significantly increase the 

importance of software maintenance, approaching, 

if not equal to, hardware maintenance (Gala et al., 

2016; Achour et al., 2017). This century sees more 

emphasis on maintenance with respect to such areas 

as the human factor, quality, safety, and cost-

effectiveness. New thinking and new strategies are 

required to realize potential benefits and turn them 

into profitability. All in all, profitable operations 

will be the ones that have employed modern 

thinking to evolve an equipment management 

strategy that takes effective advantage of new 

information, technology, and methods (Herath et al., 

2021). 

Predictive maintenance (PM) is a method to monitor 

the status of machinery to prevent expensive failures 

from occurring and to perform maintenance when it 

is required. From visual inspection, which is the 

oldest method, PM has evolved to automated 

methods that use advanced signal processing 

techniques (Benmouiza and Cheknane, 2013). 

Traditionally, maintenance creates a trade-off 

situation in which one must choose between 

maximizing the useful life of a part at the risk of 

machine downtime (run-to-failure) and maximizing 

up-time through early replacement of potentially 

good parts (time-based PM), which has been 

demonstrated to be ineffective for most equipment 

components considered flawed and unreliable in 
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recent years (Rahimikhoob, 2010; Chen and Li, 

2014). PM breaks these tradeoffs by empowering 

companies to minimize maintenance and 

forecasting it ahead of time. Adoption of PM allows 

for the maximization of the useful life of assets by 

reducing the frequency of maintenance activities, 

avoiding unplanned breakdowns, and eliminating 

unnecessary preventive maintenance. This results in 

substantial time and cost savings and higher system 

reliability. To implement a PM approach, a 

condition monitoring (CM) system is necessary. 

Using the words of Chen et al. (2013), CM is “the 

process of monitoring one or more parameters of a 

machine to predict its potential faults early." A TCM 

could prevent tool wear, allow optimum utilization 

of the tool life, and improve the efficiency of the 

machine. TCM has a foremost importance in metal 

cutting due to its direct impact on the quality of the 

machined surface, its dimensional accuracy, and, 

consequently, the economics of machining. Even if 

the tool is not broken yet, its degradation reduces the 

work surface quality and leads to a significant loss 

of dimensional accuracy (Grincova and Marasova, 

2014). On the other hand, excessive preventive 

replacement of tools involves higher costs and 

production time; it will require additional tools to be 

purchased, which are generally expensive, as well as 

considerable time to change the tool. The Internet of 

Things (IoT) enabled the presence of abundant 

sensors that, in real-time, collect big data composed 

of time domain features. The current technologies 

are so developed that the scientific community is no 

longer studying how to detect manufacturing data 

but which method is the most economical one 

(Grinˇcov´a and MArAsov´a 2014; Torabi et al., 

2018). PM is performed with machine learning 

(ML) methods that are much more accurate and can 

take into account all the factors provided by the 

sensors. With the advent of the IoT and machine 

learning methods, manufacturing systems can 

monitor physical processes and make smart 

decisions through real-time communication and 

cooperation with humans, machines, sensors, and so 

forth (Tienbui et al., 2019). Artificial intelligence 

enables manufacturers to reduce equipment 

downtime, spot production defects, improve the 

supply chain, and shorten design times by using 

machine learning technologies that learn from 

experience. One of the last applications of these 

technologies is the development of predictive 

maintenance systems (Park et al., 2015; Paller and 

Elo, 2022). 

The untimely and sudden downtime of machine-on-

operation modules, specifically in mass production, 

and urgent needs called for more research. Accurate 

and precise breakdown times have not been 

successfully predicted. The study on the prediction 

of milling machine failure using machine learning 

models focused on developing a predictive model 

that can identify potential failures or malfunctions 

in generic algorithm milling machines. This 

development would improve the efficiency and 

productivity of milling machine operations by 

enabling proactive maintenance and reducing 

unplanned downtime. 

MATERIALS AND METHOD 

Data Collection 

The machine learning model was developed using a 

milling machine set collected at the Project 

Development Institute (PRODA), Enugu State. A 

random forest model was built using five input 

parameters (air temperature, process temperature, 

rotational speed, torque, and tool wear). The model 

was developed using a random forest classifier 

pipeline with 100 estimators of Bernoulli Naive 

Bayes and a learning rate of 0.1 as a minimum 

condition. The data set was split into two sets for 

training and testing the random forest model. 

Seventy percent (97%) of the 3000 data set was used 

for sample training, while the remaining 3% was 

used for model testing. 
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Description of the Random Forest Model 

Random forest is a machine learning algorithm that 

builds multiple decision trees and merges them to 

create a forest for more stable and accurate 

prediction. The multiple decision trees are called 

estimators, and each tree in the ensemble is 

comprised of a data sample drawn from a training 

data set with replacement, called the bootstrap, as 

shown in Figure 1 (Diez-Olivan et al., 2017). It is 

deployed for both classification and regression 

problems. A random forest classifier collects the 

result of each decision tree and expects the final 

output based on the majority votes of predictions 

(Jansen et al., 2018; Grincova and Marasova, 2014).  

Equation 1 is used to make and calculate a 

prediction at a new point x classification according 

to Archour et al., 2017. 

CB(x)=majority vote(mean){Cb(x)B}  (1) 

 

Figure 1: Decision forest 

where Cb (x) is the class prediction of both random 

forests. The flow chart of the random forest 

algorithm is presented in Figure 2 

 

Figure 2: Flow chart of random forest algorithm 
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Evaluation Criteria 

The model's performance was evaluated using 

performance metrics such as confusion matrix, 

accuracy, precision, recall, accuracy, and F1 score. 

Confusion Matrix 

A confusion matrix is an n*n matrix (where n is the 

number of labels) used to describe the performance 

of a classification model. It contains several true 

positives, true negatives, false positives, and false 

negatives. True positives are the number of cases 

where the model correctly predicted a positive 

outcome and true negatives are the number of cases 

where the model correctly predicted a negative 

outcome. False positives are the number of cases 

where the model predicted negative outcomes as 

positives, while false negatives are cases where the 

model predicted positive outcomes as negatives. 

Accuracy 

Accuracy is a performance metric used to measure 

the percentage of correctly classified observations. 

The mathematical expression for calculating 

machine accuracy is stated by Equation 2 

(Guermoui et al., 2018). 

Accuracy =    
True Positive + True Negative

Total Sample
     (2) 

Precision 

Precision measures the proportion of true positives 

among the positive predictions. It is obtained by 

dividing the number of true positives by the sum of 

true positives and false positives. The machine's 

precision is calculated by using Equation 3 

(Guermoui et al., 2018). 

Precision = 
True Positives (TP)

True Positive (TP) + False Positives(FP)
     (3) 

Recall 

Recall, also called "true positive rate" or 

sensitivity," measures the proportion of true 

positives among the actual positives. It is calculated 

by dividing the number of true positives by the sum 

of true positives and false negatives. 

F1-Score 

The F1 score is a metric that combines precision and 

recall into a single core. Equation 4 is used for 

finding the F1 value (Chen et al., 2011). 

F1-Score = Precision + Recall                  (4)        

Data Visualization 

The data is made up of ten thousand (10000) target 

data sets, comprising one for zero power failure 

target output and one for power failure target output.  

 

Fig. 3: Target value on causes of power failure 
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Figure 3 shows the expanded causes of power 

failure based on tool wear failure, overstrain failure, 

no failure, and heat dissipation failure. 

RESULTS AND DISCUSSION 

Performance Metrics of a Random Forest Model 

A random forest model was developed in this study 

using five input parameters: air temperature, process 

temperature, rotational speed, torque, and tool wear. 

Table 1 shows the results of the performance metrics 

for the built random forest model. 

Confusion Matrix Analysis 

 A confusion matrix was built using validation data 

ciproxifan seen data to evaluate how well the model 

has learned in classifying machine failure and no 

machine failure from the data set. The true label 

signifies the actual target of our data set, while the 

predicted label depicts the model target output. 

Summing up the rolls, there were 2899 no-machine 

failure targets and 101 machine failure targets. 

However, of the 2899 no machine failure targets, the 

model predicted 2884 no machine failures as true 

positives (TP) and 15 no machine failures as false 

positives (FP) better in performance as contained in 

Benmouiza and Cheknane, (2013). On the other 

hand, the developed model precisely predicted 72 of 

the machine failure targets as true negatives (TN) 

out of 101 machine failure targets and 29 as false 

negatives (FN). 

Table1: Performance metrics of random forest model 

Model Accuracy Precision Recall F1 

Training 0.9934 0.8403 0.96153 0.8967 

Testing 0.9853 0.7128 0.82758 0.7660 

 

Figure 4 shows the possibility of machine failure 

with respect to the five input parameters. The 

possibility of machine failure increases as air 

temperature increases from 296K to 302K before 

decreasing sharply to 304K. For air temperatures 

above 304K, the possibility of machine failure is 

quite high. Whereas, an increase in process 

temperature has little effect until the process 

temperature exceeds 313K. Similarly, an increase in 

rotational speed increases the possibility of machine 

failure, specifically when it is greater than 2600 rpm 

leading to machine failure. Meanwhile, an increase 

in torque between 10 Nm and 40 Nm does not affect 

the possibility of machine failure except at 50 Nm 

and above, which increases the possibility of 

machine failure until 70 Nm, when the machine 

fails. An increase in tool wear from 0 to 150 minutes 

does not affect the possibility of machine failure; 

rather, the possibility of machine failure increases 

for tool wear between 200 and 250 minutes, with 

failure occurring at 250 and above the report of 

Torabi et al., (2018).  

CONCLUSION 

Predictive maintenance models are designed to help 

determine the condition of machines to predict when 

maintenance is needed to avoid them breaking down 

completely. It is based on the collection, 

preprocessing, training, and intelligent use of data, 

which allows for safety compliance, preemptive 

corrective actions, and increased asset life. This 

study developed and evaluated a random forest 

machine learning model on generic algorithm for 

predicting milling machine failure using five input 

parameters.  
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Fig. 4: Possibility of machine failure with input parameters 

 

Deploying the model helps operators know when 

failure is likely to occur and what measures can be taken 

before the machine fails, including pre-emptive 

investigation, maintenance schedule adjustments, and 

sand repairs. The performance evaluation of the 

developed random forest model revealed that it predicts 

milling machine failure with high precision and 

accuracy, as evidenced by the performance metrics 

obtained during the model testing: accuracy, precision, 

recall, and F1-stated values. 

The model helped determine the downtime and precise 

time for preventive maintenance to take place. This 

would in turn increase productivity and machine 

efficiency, as well as elongate its life span. 
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