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ABSTRACT  
Computational Fluid Dynamics FLUENT codes were employed in the measurement of the mean velocity profile of a 

fully-developed pipe flow. The codes used the standard two equation eddy-viscosity ( k −  ) model for analysing 

turbulence in the flow. Deviations of about 2-12%, 1.1-1.7% and 1.02-5.3% obtained between the numerical results 

and the experimental benchmark for the study in the viscous sub-layer, buffer region and the fully-developed region of 

the flow show the close agreements between the experimental and the numerical results. 
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INTRODUCTION 

 
Well-developed pipe flow profile at measurement 
positions is required for idealizing the measurement 

performance of conventional flow meters in the 
industries. This requirement, which may be in the form 

of long and straight length of constant-diameter pipe 

upstream of the measurement points, is important in 
overcoming the difficulties associated with such 

measurement. 

 
 
 

 
METHODOLOGY 

Grid Size and Sensitivity  
In order to allow a comparison with the experimental 

results of Odewole et al, 2010; numerical simulations 
are carried out on a two dimensional pipe model with a 

dimension of 102mm x 8976mm, with the dimension of 
the pipe sufficiently long enough to make the flow fully 

developed. The flow domain in this study is discretized 
into 16,800 mesh elements, with a greater mesh density 

 
Whilst the application of the Ultrasonic Velocity Profile 
(UVP), the Particle Image Velocimetry (PIV) and other 

measurement techniques has been successful in 
obtaining the mean velocity profile and Reynolds stress 

for single-phase laminar, transitional and turbulent flows 
in pipes and channels (Mori et al, 2002; Yamanaka et al, 

2002; van Doorne and Westerweel, 2007; Bai et al, 
2010; Odewole et al, 2010), the integrity of these results 

for application in a wider range of flow measurements 

are still questionable. 

 
This paper therefore focuses on the use of the standard 

k −  model available in general-purpose Computational 

Fluid Dynamics (CFD) FLUENT codes, to estimate the 
velocity profile in a turbulent pipe flow using the 
measurement data of Odewole et al, 2010 as an 
experimental benchmark. 

 
placed in the vicinity of the pipe walls since the 

reliability of numerical results for wall-

bounded flows depends on the grid resolution 
in the wall regions (Fluent, 2006). 
 
The greater mesh density employed in the near-wall 
regions of the flow pipe for this study is also 
particularly important in order to obtain accurate 

information since the numerical results are susceptible 
to grid dependency in these regions. 
 
 
Turbulence Model  
The Navier-Stokes equations governing the 

incompressible, turbulent pipe flow in this study are 
solved by employing the Reynolds average technique of 

flow computation since direct numerical simulation 
places excessive demands on computational resources 

(time and space) for practical engineering analyses 
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(Rodgers and Eveloy, 2004). The Reynolds-Averaged 
Navier-Stokes (RANS) equations shown in Equations  
(1) and (2) are therefore combined with the standard 

k −  turbulence model in order to obtain accurate 
information on the flow. Equation (1) is for the 
conservation of mass while Equation (2) is the momentum 
equation in the x-, y-, and z-directions. 

 

 

Viscous dissipation and radiation are not considered 
here.  

 

(ui )=0, 
xi  (1) 
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The need for turbulence modelling, in addition to 
solving the RANS equations above has grown 

tremendously over the years. This is as a result of the 
need to capture the different sizes of turbulent eddies, 

responsible for the transport and mixing of turbulence in 
fluid flow, on an appropriate scale. The Reynolds stress,  

− uiuj   in Equation (2) must be properly modelled   
for closure of Equations (1) and (2). The form of closure 
obtained depends on the type of turbulence model used.  

Using the two equation k −  model, − uiuj can be   
related to the mean velocity gradients within the pipe 
using the Boussinesq approach as shown in Equation (3) 
(Versteeg and Malalasekera, 1995). 
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The advantage of the Boussinesq approach lies in the 
relatively low computational cost associated with the 

evaluation of the turbulent viscosity, t (Rodgers and  
Eveloy, 2004; Fluent, 2006). With the k −   
turbulence model, two additional equations for the  
turbulent kinetic energy, k and the turbulent dissipation 

rate,  are solved. 
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The k −  turbulence model, since its introduction by 

Launder and Spalding (1974), has found extensive use 

in industries because of their modest requirements for 
computing resources, robustness, and their performance 
in obtaining fairly accurate predictions in most flows.  

Further readings and information on the k −  model 

can be obtained from the following literatures: 

Nallasamy, (1987); Menter, (1994) and Fluent, 2006. 

 

Numerical Method 

The discretized forms of the RANS equations in (1) –  
(3) above and Equations (4) and (5) for the turbulence 
employed in this study were solved on a control-volume 

basis using a pressure-based solver, where a segregated 
solution algorithm was used. The momentum and other 

scalar variables constituting the convection terms on the 
cell faces of Equations (1) – (5) were obtained using the 

second order upwind scheme in order to reduce 
numerical diffusion while the second-order accurate 

central-differencing scheme was employed for the 
diffusion terms of the governing equations. 

 

Since FLUENT adopts a co-located scheme, where 
pressure and velocity values are both stored at centres of 

computational cells, it therefore implies that cell-centred 
pressure values also have to be interpolated to obtain 
pressure values at the face of cells. To do this, the 

 
second order pressure interpolation scheme was 

adopted. In order to model the interaction between 
pressure and velocity, pressure correction was carried 

out on Equation (1) so as to couple together pressure 
and velocity values in Equations (1) and (2) using the 

SIMPLE (Semi-Implicit Method for Pressure-Linked 
Equations) algorithm for pressure-velocity coupling 

described by Patankar (1980). 

 
Using the size of the flow inlet as a dominant length 
scale in the description of the flow regime in a non-
dimensional form, a Reynolds number of 6800 was used 
as the basis for the selection of the appropriate 
turbulence model à priori. Consequently, the two-  

equation, eddy-viscosity model ( k −  ) was then used 

for modelling turbulence in the pipe flow. In order to 

bridge the viscosity-affected near-wall region and the 

fully turbulent core of the pipe together, a two-layer 
based, non-equilibrium wall function was used. This 

wall function sensitized the Launder and Spalding’s 

logarithmic law for mean velocity to pressure-gradient 

effects in the flow (Launder and Spalding, 1972). 

 

The kinetic energy of turbulence in near-wall cells is 
computed based on the assumption that the flow in the 
pipe can be regarded as made of a viscosity-affected 

near-wall region and the fully turbulent core. Thus, the 
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use of the non-equilibrium wall functions effectively 
relaxes the local equilibrium assumption adopted by the 

standard wall functions in computing the budget of 
kinetic energy of turbulence at near-wall cells (Menter, 

1994 and Nallasamy, 1987). Convergence of the steady, 
incompressible turbulent pipe flow was checked by 

ensuring that the scaled residual, R in Equation (6)  

below, is less than 10−4
 for all variables. User 

modifications, where applicable, were made to the 
implementation of the turbulence model employed in the 
FLUENT code.  

R 
 

= 
cells ,C 
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RESULTS AND DISCUSSION  

A comparison between the mean velocity profiles 

obtained from the numerical measurement carried out in 
this study and the experimental data of Odewole et al, 

2010 is depicted in Figure 1 below. It is evident from 

Table 1 that a good agreement exists between the 
experimental and the numerical data in the viscosity-

affected inner layer of the pipe since a deviation of 

about 2-12% is obtained. This viscosity-affected inner 

layer, where the viscous force predominates the inertia 
force, lies between y = 0 (the wall of the pipe) and a 

distance y = 0.41mm away from the wall, where y is 

measured in wall units.  

 

 Experimental  Numerical 
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Figure 1: Comparison of Linear Velocity Profiles 

 

 

Table 1: Mean Velocity Profile Measurements 
 

 Experimental Numerical  

 Measurement Measurement Deviation 

 (Odewole et al,    

  2010) (Present Study)  

 U/Um 1-r/R U/Um 1-r/R (%) 

 0.17 0.0020 0.15 0.0000 11.76471 

 0.31 0.0039 0.30 0.0040 3.225806 

 0.49 0.0078 0.48 0.0080 2.040816 

 0.58 0.0118 0.57 0.0120 1.724138 

 0.66 0.0196 0.65 0.0200 1.515152 

 0.70 0.0294 0.69 0.0300 1.428571 

 0.72 0.0392 0.71 0.0400 1.388889 

 0.74 0.0490 0.73 0.0500 1.351351 

 0.76 0.0588 0.75 0.0600 1.315789 

 0.79 0.0784 0.78 0.0800 1.265823 

 0.81 0.0980 0.80 0.1000 1.234568 

 0.83 0.1176 0.82 0.1200 1.204819 

 0.87 0.1569 0.86 0.1600 1.149425 

 0.91 0.1961 0.90 0.2000 1.098901 

 0.94 0.2941 0.92 0.2900 2.12766 

 0.98 0.3922 0.95 0.3900 3.061224 

 0.94 0.5882 0.99 0.5900 -5.31915 

 0.98 0.7843 0.99 0.7800 -1.02041 

 1.00 1.0000 1.00 1.0000 0 

 

Whilst the CFD codes can predict accurately the 

velocity variation in the flow within this region, the 

inability of the hot-wire probe employed in the 

experimental measurement of the velocity profile in 
obtaining a good fit of data for the velocity variation 

within this region lies in the geometry of the hot-wire 

probe. The pre-calibrated straight hot-wire probe is 
unable to reach the wall of the pipe, with the 

measurement of the velocity profile starting at a 

distance corresponding to y = 10mm from the wall. This 

causes restricted data for the velocity variation within 
the viscosity-affected inner layer of the pipe to be 

obtained. Further information on the experimental 

procedure and measurement can be obtained from 
Odewole et al, 2010. However, a higher mesh density 

positioned at the wall and within the vicinity of the wall 

ensures that adequate information for the velocity 

variation within the viscosity-affected inner layer can be 
obtained from the numerical investigations. 

 

A very good agreement is also obtained between the 
experimental and numerical data in the buffer region of 

the flow where the turbulent eddies are rapidly damped 
and consequently, the turbulent shear stress is reduced 

to practically zero levels in comparison to the viscous 
stress. This zone, corresponding to the region between y  
= 0.61mm to y = 10.2mm in Figure 1, shows a deviation 
of 1.1-1.7%. Beyond the buffer region, the contribution 

of viscosity decreases till equal contribution is obtained 
between the viscous and the inertia forces in the flow. 
This region, corresponding to y = 10.2mm and y = 
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51mm (the centreline of the pipe), is called the fully-
developed region of the flow. A maximum deviation of 
about 5.3% exists between the experimental and the 
numerical data in this region. 

 

CONCLUSION  
In this paper, the velocity profile of a turbulent pipe flow 
has been measured numerically using FLUENT while 
turbulence in the pipe flow was modelled using  

the standard k −  model as a result of its robustness in 

promoting stable convergence and universality for most 

practical engineering analyses. Deviations of about 2-
12%, 1.1-1.7% and 1.02-5.3% obtained in the viscosity-

affected inner layer, buffer region and the fully-

developed region of the pipe flow in comparison with 

the experimental results are evidence of the close 
agreements between the numerical results and the 

experimental benchmark employed for the study. An 

alternative method of measuring the velocity profile of 
conventional flow meters is therefore provided by the 

results of this numerical study. Using this measurement 

technique, savings in cost and time are obtained without 

the need for recourse to experimental measurement 
techniques requiring high capital outlay. 
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NOMENCLATURE 

General  
Quantity Description 

xi , x j , xk , xl Coordinate axes 
 

ui , u j , uk , ul Mean velocity components  

ui , u j Fluctuating velocity components 

P Fluid pressure 

k Turbulence kinetic energy 

a Equation coefficient 
 

bo Net source term  

Gk Generation of turbulent kinetic energy due to  
mean velocity gradients 

Gb Generation of turbulent kinetic energy due to 

 
 
 
 
Unit 
 
- 

 
ms

-1 

ms-1 

Nm-2 

m2s-2  
- 
 
- 
 
kgm

-3
s
-3 

 

kgm
-1

s
-3 
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 buoyancy  
C

1 , C2 , C3 Empirical constants - 

R 
Convergence indicator - 

 Greek Letters  
Quantity Description Unit 

 Fluid density kgm
-3 

 , t Dynamic and turbulent viscosities kgm
-1

s
-1 


ij Kronecker delta - 

 Turbulence dissipation rate m2s-3 

 Transport scalar variable - 

 k ,   Turbulent Prandtl numbers  for k and  - 

 Dimensionless Quantities  

Quantity Description Unit Re(= uD ) 
 Reynolds number - 

 Subscripts  
Quantity Description Unit   
nb  
C 

cells 

 
Neighbour cells - 
 
Central node on control volume - 
 
Control volumes - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




