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 Access control systems are crucial for securing sensitive data and system 

components by allowing authorized access while blocking unauthorized 

entities. Traditional unimodal biometric systems, make use of a single 

physiological or behavioural trait, and have limitations such as susceptibility to 

spoofing and environmental constraints, leading to reduced reliability. This 

study explores an enhanced multimodal biometric access control system that 

combines ear and iris traits using an enhanced Self-Organizing Feature Map 

(SOFM) algorithm improved with Chicken Swarm Optimization (CSO). The 

system's performance is evaluated against traditional SOFM, with a focus on 

recognition accuracy and processing time. The data used to train the classifier 

for this study were collected from 190 individuals, encompassing a total of 

2,280 images of iris, and ear traits. Preprocessing involved cropping, resizing, 

and grayscale conversion using histogram equalization. Feature extraction 

utilized Local Binary Patterns (LBP), followed by feature fusion at the feature 

level to create an integrated feature set. The enhanced SOFM algorithm was 

then applied for classification, with the CSO technique optimizing the learning 

rate and weight parameters for improved performance. At different thresholds, 

the CSO-SOFM classifier outperformed the standard SOFM classifier using 

Sensitivity, Specificity, Precision, Accuracy and Recognition time. 
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INTRODUCTION 

Access control systems enable authorized users to 

access data or system components while preventing 

unauthorized individuals from gaining access, 

thereby safeguarding against illegal access, data 

modification, and confidentiality breaches (Kahie et 

al., 2021; Atlam et al., 2020). Biometric 

authentication, derived from "bios" (life) and 

"metric" (measuring), can be unimodal, bimodal, or 

multimodal, utilizing one, two, or multiple 

biometric modalities, respectively (Das et al., 2018; 

Adedeji et al., 2021a). It relies on physiological 

traits such as face, fingerprint, and iris, as well as 

behavioural traits like voice and gait, to identify 

individuals (Sabhanayagam et al., 2018). 

Biometrics refers to the automated identification of 

individuals based on physical or behavioural 

characteristics such as face, fingerprints, voice, iris, 

gait, or signature (Singh et al., 2019; Adetunji et al., 

2018). These biometric modalities are used in 

diverse applications, ranging from personal device 

access to border control (Jain et al., 2016). 

Biometric systems, or Identity Verification (IV) 

systems, authenticate individuals by identifying and 
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validating unique biometric traits (Bowyer and 

Burge, 2016). Since each person's biometric 

identifiers are unique and permanent, it becomes 

challenging for imposters to mimic registered 

individuals' biometric traits (Yang et al., 2019). 

These systems, therefore, play a critical role in 

enhancing digital security and are in high demand in 

applications such as forensics, defence, 

surveillance, personal identification, and banking 

(Okediran and Oguntoye, 2023). Recently, soft 

biometric characteristics such as gender, weight, 

and age have been introduced to enhance 

recognition systems (Hassan et al., 2021). The 

choice of biometric traits depends on their 

uniqueness and the intended application, with face, 

ear, and iris being commonly selected for their 

reliability and stability (Wang et al., 2022; Zhou and 

Bhanu, 2009). These biometric technologies 

significantly enhance security and efficiency in 

access control systems' user validation processes. In 

earlier times, unimodal systems that relied on a 

single physiological or behavioural trait for 

biometric authentication were widely used for 

identity confirmation. However, they are now 

limited due to several shortcomings, including 

susceptibility to spoofing, low accuracy, lack of 

universality, and vulnerability to environmental 

factors (Adedeji et al., 2021b). On the other hand, 

multimodal biometric systems, which integrate 

multiple or complementary biometric features 

obtained through different methods, offer enhanced 

security against spoofing attacks and demonstrate 

high reliability and robustness in dynamic 

environments (Atanda et al., 2023). For example, 

while fingerprints are commonly used for 

identification, they can be compromised by issues 

such as scars, distortions, wounds, and residual oils, 

which may affect accuracy (Oloyede and Hancke, 

2016). In this study, ear and iris traits were selected 

based on their distinctiveness and established 

performance. The ear is notable for its ease of 

capture, user-friendly nature, and suitability for 

contactless access control, a feature particularly 

valuable in maintaining hygiene in healthcare and 

during pandemic scenarios like COVID-19 

(Oguntoye, et al., 2023). Additionally, its stability 

throughout an individual's life and reliability under 

varying environmental conditions, such as lighting 

and background noise, further enhance its utility 

(Wang et al., 2022; Zhou and Bhanu, 2009). The 

iris, with its lifetime stability, is recognized as one 

of the most accurate biometric traits. It can function 

as either a passive or active trait, depending on the 

proximity of the sensor to the individual. 

A biometric system framework typically involves 

several operations: input of biometric 

characteristics, preprocessing, determining the 

region of interest, feature extraction, matching 

algorithms, and decision-making (Gomez-Barrero 

et al., 2017). Preprocessing addresses variations in 

the input data, preparing it for feature extraction, 

where distinct patterns from the biometric trait are 

isolated (Ogundepo et al., 2022). Matching 

algorithms then compare these extracted features 

against stored templates, and the decision-making 

phase authenticates or identifies the individual as a 

legitimate user or an imposter. 

Biometric systems can be categorized based on 

various criteria (Sarmokaddam, 2017). For example, 

biometric traits can be classified as physiological 

(e.g., ear, fingerprints, face, iris, DNA) or 

behavioural (e.g., gait, voice, signature) (Adetunji et 

al., 2018; Olayiwola et al., 2023). Systems can also 

be unimodal, using a single biometric trait, or 

multimodal, using multiple traits for higher 

accuracy and security. Multi-sensor systems 

enhance accuracy by using multiple sensors to 

capture the same biometric trait, while Multi-

Instance systems capture more than one instance of 

the same trait (e.g., multiple fingerprints). 

Additionally, Multi-Algorithm systems use multiple 
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algorithms for feature extraction and fusion, further 

improving performance (Olayiwola et al., 2024). 

In multimodal biometric systems, fusion can occur 

at various stages, either before or after the matching 

phase. When fusion is carried out at the feature or 

sensor level, it occurs before the matching phase; in 

contrast, score and decision level fusion takes place 

after trait matching but before the final decision-

making process.  Sensor Level Fusion (Image Level 

Fusion) involves combining biometric modalities 

immediately after capture. Feature Level Fusion 

combines features from different biometric traits 

into a higher-dimensional feature vector containing 

rich raw data. Although this type of fusion can result 

in high dimensionality, effective preprocessing can 

mitigate this issue and improve recognition 

accuracy (Byahatti, 2017). Score Level Fusion 

combines scores generated by individual biometrics, 

while Decision Level Fusion merges decisions made 

by individual authentication systems to form the 

final decision (Nadheen and Poornima, 2013). 

Among these techniques, feature-level fusion is 

preferred because it uses raw biometric data, which 

contains rich information from raw images. This 

technique is expected to increase recognition 

accuracy, (Byahatti, 2017; Ola et al., 2017). 

Therefore in this work, feature level fusion was 

chosen for its potential to enhance recognition 

accuracy by integrating information early in the 

processing stage.  

Self-Organizing Feature Maps (SOFM) are machine 

learning algorithms that categorize input vectors 

based on their spatial arrangement, effectively 

learning the distribution and topology of the training 

data. This makes SOFMs highly effective for 

categorizing complex biometric data, as they map 

high-dimensional multimodal data onto a lower-

dimensional map, extracting significant features and 

revealing underlying patterns (Wickramasinghe et 

al., 2019; Ola et al., 2020). The robustness of 

SOFMs is maintained through self-organization and 

continuous updates, with efficiency depending on 

well-tuned training parameters such as learning rate, 

neighbourhood function, input weights and weight 

update.  

Several studies have explored multimodal biometric 

systems. For instance, Nadheen and Poornima 

(2013) in a paper titled Feature Level Fusion in 

Multimodal Biometric Authentication System 

examined the performance of ear and iris 

recognition individually and in combination using 

score level fusion. They extracted features using 

Principal Component Analysis (PCA) to reduce 

dimensionality while preserving information, 

demonstrating a 95% success rate with the 

multimodal approach. Similarly, Khursheed and 

Mir (2016) in a research titled Personal Verification 

Using Two Level Fusion Schemes Based on Ear and 

Iris Biometrics employed a two-level fusion scheme 

based on ear and iris biometrics, achieving a perfect 

recognition rate of 100% with zero False 

Acceptance Rate (FAR) and False Rejection Rate 

(FRR), the work could be computationally 

expensive since recognition time was not reported. 

Kaur et al.(2017) examined various security breach 

attacks in a paper titled “An Analysis of Security 

Breach Attacks and Errors in Biometric Systems”. 

An analysis of error rates and security breaches was 

performed, but the focus was on analyzing breach 

attacks and errors such as False Acceptance Rate 

(FAR), False Rejection Rate (FRR), and Failure to 

Enroll (FTE) that occur during data capture. Ma et 

al. (2020) in the paper “An Overview of Multimodal 

Biometrics Using the Face and Ear”, highlight the 

advantages of using ear biometrics alongside face 

recognition to address issues such as facial 

expression, pose variation, and occlusion, as ear 

structure is more stable and less affected by ageing. 

While combining face and ear improves accuracy 

and robustness in biometric systems, the study 
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explored biometric quality-based adaptive fusion, 

offering a flexible approach to integrating face and 

ear recognition under varying conditions. However, 

the paper focused on degenerated images and the 

research was not tested with other biometric traits to 

ascertain its effectiveness.  Sarangi et al. (2021) in a 

research paper titled “A feature-level fusion based 

improved multimodal biometric recognition system 

using ear and profile face”, proposed a system 

combining ear and profile face biometrics, using 

PCA and z-score normalization for feature 

extraction and k-nearest neighbour (KNN) for 

classification, demonstrating superior accuracy with 

multimodal data. The system made use of 

supervised learning algorithms which may 

experience overfitting when very large data is not 

used.  

Shaban et al. (2023) in the paper titled "A Novel 

Fusion System Based on Iris and Ear Biometrics for 

E-exams" presented a system that uses ear and iris 

biometrics to identify students during electronic 

exams. The system applied Haralick texture for ear 

features and Tamura texture for iris features, and 

then fused them at the feature level, achieving 97% 

recognition accuracy. The study was particularly 

relevant during the COVID-19 pandemic and 

focused majorly on recognition accuracy without 

discussing the system's efficiency, specifically the 

recognition time. While the fusion of ear and iris 

traits at the feature level achieved 97% accuracy, 

there is no analysis of processing speed, which is 

crucial in real-time applications like electronic 

exams. This omission leaves room for further 

exploration in balancing accuracy with processing 

time.  

This paper addresses the limitations of unimodal 

biometric systems—such as susceptibility to 

spoofing and environmental constraints—by 

introducing an advanced multimodal biometric 

system that combines ear and iris recognition. It 

improved the classification accuracy of ear-iris 

multimodal biometrics through an enhanced SOFM 

algorithm optimized with Chicken Swarm 

Optimization (CSO), thus addressing accuracy 

issues observed in previous multimodal systems like 

those studies by Nadheen and Poornima (2013) and 

Shaban et al. (2023). By refining the classification 

algorithm and optimizing parameters, this paper 

enhances recognition performance and evaluates the 

new CSO-SOFM classifier against traditional 

methods, demonstrating superior results in 

accuracy, sensitivity, specificity, and processing 

time. 

RESEARCH METHOD  

The study implemented a multimodal access control 

system integrating ear and iris biometrics using 

Chicken Swarm Optimization and Self-Organizing 

Feature Maps (CSO-SOFM) in MATLAB 2016a. 

The system development proceeded through five 

stages: data acquisition, preprocessing, feature 

extraction, fusion, and classification. Figure 1 

illustrates the framework of the CSO-SOFM access 

control system, detailing its design and development 

stages.  

Data Acquisition 

This study captured high-quality iris, and outer ear 

images from 190 individuals at the LAUTECH 

Campus, ensuring uniform lighting conditions 

throughout the image acquisition process. Each 

biometric trait comprised six instances of each trait 

(6 instances*2 traits*190), resulting in a dataset of 

2,280 images with a resolution of 100x100 pixels. 

Samples of acquired images are as shown in Figure 

2 
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Figure 1. Framework of the CSO-SOFM access 

control system. 

 

 

 

Figure 2. Samples from acquired ear and iris images 

Data Preprocessing   

After acquiring the local dataset, ear, and iris images 

underwent preprocessing steps including cropping, 

resizing, and conversion to grayscale using 

histogram equalization. Average vectors 

representing each biometric trait were extracted to 

enhance image clarity and reduce noise. Visual 

examples of the enhanced images using histogram 

equalization are depicted in Figure 3.  

Normalization of Feature Vector 

Feature vectors extracted from the dataset initially 

exhibited variations in range and distribution. To 

ensure uniformity, all traits were resized to 128x128 

pixels.  

 

 

Figure 3. Samples of preprocessed images using 

histogram equalizer. 

Subsequently, pixel values were normalized to a 

standard scale ([0, 1]) using the min-max 

normalization method. For a feature vector 𝑋 = {𝑥1, 

𝑥2, 𝑥3,..., 𝑥𝑛}, the normalized feature vector 𝑋’ was 

computed using equation 1 

𝑋 =
𝑥𝑖 − min(𝑋)

max(𝑋) − min(𝑋)
                                           (1) 

 Feature Extraction and Fusion 

In this study, Local Binary Patterns (LBP) were 

employed for ear feature extraction, while the Log-

Gabor filter was used for iris feature extraction. The 

LBP method determines the binary code of each 

central pixel by comparing it with its eight 

neighbouring pixels, as outlined in equations (2) and 

(3). These binary codes are then consolidated into a 

final representation for the central pixel using 

equation (4). To ensure robustness in feature 

extraction across the dataset, bilinear interpolation 

was incorporated to accurately compute the grey 

values of neighbouring pixels. The equations used 

for this process are as follows: 

𝑥𝐿 = 𝑔𝑝 – 𝑔𝑐                       (2) 

(𝑥𝐿) = {01𝑥𝑥𝐿𝐿≥≤ 0 0}                                  (3) 

LBP p(P, R) = Σ (g(𝑥𝐿) * 2i),                    (4) 

for i = 0 to (P-1) 
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where 𝑔𝑝𝑎𝑛𝑑𝑔𝑐 refers to the grey value of 

neighbours and centre pixels, respectively; while 2i 

indicates the binomial value. The two parameters P 

and R are referred to as the coordinates of the centre 

pixel. p refers to the total number of neighbours, 

while i refers to the current neighbour value. LBP(P, 

R) is the Local Binary Pattern value at the center 

pixel P with a radius of R. g(𝑥𝐿) is a function that 

returns 1 if the intensity of the neighbouring pixel 

𝑥𝐿 is greater than or equal to the intensity of the 

center pixel P, and 0 otherwise. 

For iris feature extraction, the Log-Gabor filter was 

used to extract the best features from the iris images. 

This process began with the setting of key 

parameters, including the center frequency p0 and 

bandwidth σ. The normalized iris image was then 

converted to the frequency domain using the Fourier 

Transform. Next, the Log-Gabor filter transfer 

function, as specified in equation (5), was applied to 

the frequency domain representation of the iris 

image: 

𝐺(𝑝) = exp (−
(𝑙𝑜𝑔 (𝑝/𝑝0))2

2(𝑙𝑜𝑔 (𝜎/𝑝0))2
)                   (5) 

         

Here, G(p) represents the transfer function of the 

Log-Gabor filter at frequency p, where p is the 

frequency variable, p0 is the center frequency of the 

filter, and σ is the bandwidth parameter of the filter. 

Following this, the filtered image was converted 

back to the spatial domain using the Inverse Fourier 

Transform. Finally, phase information was 

extracted from the filtered image and encoded into a 

binary code known as the iris code. After the 

features had been extracted and normalized, Feature 

fusion was used to concatenate features extracted 

from the dataset to form a new, integrated feature 

set, facilitating the combination of incompatible 

feature vectors from multiple modalities. This 

process occurs at the feature level, merging the 

biometric information before matching through a 

weighted mean of the normalized feature vectors 

from each modality. The resulting fused vector is a 

single representation, achieved by assigning 

different weights to each feature and using the 

weighted average rule. The weighted average, also 

known as the weighted mean, calculates the 

combined value of multiple inputs to create a new 

pixel intensity or image for digital representation. 

Classification using Enhanced SOFM (CSO-

SOFM) 

The SOFM is a simple artificial network that learns 

through an unsupervised method, similar to how 

human brains learn. It maps input vectors to specific 

output nodes without needing predefined input-

target pairs, following a "winner takes all" strategy. 

This allows the automatic grouping of the dataset 

into the output layer nodes based on similarity. All 

neurons in the input layer are connected to those in 

the output layer, with the feature vector length 

determining the number of input neurons and the 

output classes determining the output layer size. 

During learning, input vectors are mapped to the 

output based on similarity, and the weight matrix 

Wij connects input and output neurons. 

Initially, the closest output neuron to the input 

vector is activated, termed the winner node. The 

weights of the winner node are adjusted to 

approximate the input vector closely, using the 

equation:  

𝑤𝑖(𝑘) = 𝑤𝑖,𝑗(𝑘 − 1) + 𝛼𝑟(𝑥𝑖 − 𝑤𝑖,𝑗(𝑘 − 1))  (3) 

Where: 𝑤𝑖(𝑘)is the updated weight for the ith 

neuron at iteration k,𝑤𝑖,𝑗(𝑘 − 1) is the weight of the 

ith neuron at the previous iteration(𝑘 − 1), 𝑥𝑖 is the 

input value for the ith neuron, and 𝛼𝑟 is the learning 

rate usually chosen to be less than 1. 

The SOFM was enhanced using the Chicken Swarm 

Optimization (CSO) technique instead of the 

standard weight update equation, making it more 
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robust and improving performance. After learning, 

the weights are settled, (the weight reaches a state 

where they no longer change significantly) and used 

in the testing phase, where the input feature vectors 

are classified based on the dot product with the 

weight matrix. The CSO algorithm optimized the 

SOFM learning rate and weight parameters, 

transforming 3-D discrete maps into 2-D discrete 

maps for better accuracy. 

The CSO-SOFM requires the training and 

classification stage. Training involves initializing 

neuron weights, sampling input vectors, finding the 

Best Matching Unit (BMU), and updating neuron 

weights. Training can be sequential, suitable for 

online learning, or batch, suitable for offline 

learning; (Kohonen, 2012; Bullinaria, 2004), 

sequential training was used.  

The following steps were used for the CSO-SOFM 

training:  

i. Input: This includes the following- 

-training data X (the ear and iris data) 

-SOFM parameters- the number of neurons, 

learning rate, number of iterations 

-CSO parameters- coefficients for rooster, hen and 

chick 

Vector Selection: An input vector is selected 

randomly from the dataset.  

ii. SOFM and CSO Initialization: 

-Initialize, normalize and establish SOFM and CSO 

network parameters-initialize a population of 𝑁 

chickens, positions of chicken, evaluate the fitness 

of the chicken and define other related parameters; 

set the SOFM learning rate, the neuron weights, the 

number of inputs and the number of iterations. 

-Assign roles to each neuron (e.g., rooster, hen, and 

chick). 

-Set CSO parameters: α, β, γ, δ, ϵζ, η. 

iii. Determination of Winning Node: The winning 

node is also called the BMU, and it is determined 

by calculating the Euclidean distance between the 

connection weight and the randomly selected 

input. Find the best matching unit (BMU), 𝑐, with 

weights: 

𝑤𝐵𝑀𝑈 = 𝑎𝑟𝑔wi𝑚𝑖𝑛 ∥ 𝑥 − 𝑤𝑖 ∥                     (6) 

 where x is the Input Vector and wiis the weight 

vector. 

iv. Update weight using CSO: Instead of the 

continuous adjustment of the winning neuron and 

the connection weight of the neuron, the weight is 

updated using Chicken Swarm Optimization 

Algorithm in place of equation (6);  

-For Roosters: 

wi(t + 1) = wi(t) + α(wbest − wi(t)) + β ⋅

N(0,1)                                                                 (7) 

where: 

w best is the best weight vector found globally,α and 

β are coefficients, and N (0,1) is a normally 

distributed random number 

-For Hens: 

wi(t + 1) = wi(t) + γ(wr(t) − wi(t)) + δ(ws

(t) − wi(t)) + ϵ ⋅ N(0,1)                                     (8) 

where: 

wr(t)is the weight vector of a rooster, ws is the 

weight vector of another hen, γ, δ, and ϵ are 

coefficients, and N(0,1) is a normally distributed 

random number. 

-For Chicks: 

𝑤𝑖(𝑡 + 1) = 𝑤𝑖(𝑡) + 𝜁(𝑤ℎ(𝑡) − 𝑤𝑖(𝑡)) + 𝜂 ⋅

𝑁(0,1)                                                                  (9) 
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where: 

wh(t) is the weight vector of the mother hen, ζ and 

η are coefficients, and N(0,1) is a normally 

distributed random number. 

Update wbest based on the performance of the 

weight vectors with respect to the training data. 

v. Stopping Criteria: The algorithm then checks if 

all the sample images have been considered and if 

the number of iterations has been met. If yes, it 

stops but if not completed, the image count is 

incremented, and the iterations are repeated until 

completion or a stopping criterion is met. 

 RESULTS AND DISCUSSION 

This research developed an ear-iris-based access 

control system using the Chicken Swarm 

Optimization Self-Organizing feature map (CSO-

SOFM) algorithm as a classifier. The system 

performance was validated using sensitivity (SEN), 

specificity (SPEC), precision (PREC), false positive 

rates, accuracy (ACC) all in percentage, and 

recognition time (Time) in seconds at varying 

thresholds. The results of the metrics were based on 

the confusion matrices’ concepts which are: the 

True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN) values 

achieved by the system against the actual outcomes. 

The acquired 2,280 images were split into training 

(70%, 1,596 images) and testing (30%, 684 images) 

subsets to evaluate the performance of the 

developed system. The trained model was evaluated 

using the ear and iris traits. The results were 

evaluated using a threshold value, a decision 

boundary parameter that determines the behaviour 

of the classifiers as a range between 0 or 1. The 

thresholds between 0 and 1 were tested. 

Experimental results showed that the classifiers had 

constant values between 0-0.20, 0.21-0.35, 0.36-

0.50, and between 0.51-0.99. Therefore, thresholds 

0.20, 0.35, 0.50 and 0.80 were chosen. 

The classification model's performance metrics 

across four threshold levels (0.20, 0.35, 0.50, and 

0.80) show a consistent trade-off between 

sensitivity and specificity, with the highest accuracy 

of 94.44% achieved at a threshold of 0.80, where the 

model correctly identified 246 true positives and 77 

true negatives, while minimizing false positives to 8 

and false negatives to 11, all computed in 

approximately 97 seconds. 

As seen in Table 1, True Positives slightly decreased 

from 249 to 246, while True Negatives increased 

from 70 to 77. The False Positive Rate showed 

significant improvement, dropping from 17.65% to 

9.41%. Sensitivity remained relatively stable, 

decreasing marginally from 96.89% to 95.72%. 

Specificity improved considerably from 82.35% to 

90.59%. Precision and Accuracy both showed 

steady improvements, with Precision increasing 

from 94.32% to 96.85% and Accuracy from 93.27% 

to 94.44%. Processing time slightly decreased from 

97.88 to 96.86 seconds. Overall, the higher 

threshold of 0.80 demonstrated the best balance of 

performance metrics, with improved specificity and 

precision at a minimal cost to sensitivity, as the 

threshold increased. 

Also, from  Table 2, the performance of the CSO-

SOFM classifier improved as the threshold 

increased from 0.20 to 0.80, with the best results 

achieved at a threshold of 0.80, where True 

Positives remained high at 251, False Positives 

decreased to 4, True Negatives increased to 81, 

False Positive Rate reduced to 4.71%, Sensitivity 

maintained at 97.67%, Specificity improved to 

95.29%, Precision increased to 98.43%, Accuracy 

peaked at 97.08%, and the recognition time 

decreased to 86.83 seconds, demonstrating an  
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Table 1. Results of Standard SOFM 

Threshold 

 

TP FN FP TN FPR 

(%) 

SEN 

(%) 

SPEC 

(%) 

PREC 

(%) 

ACC 

(%) 

Time 

(sec) 

0.20 249 8 15 70 17.65 96.89 82.35 94.32 93.27 97.88 

0.35 248 9 13 72 15.29 96.50 84.71 95.02 93.57 97.29 

0.50 247 10 11 74 12.94 96.11 87.06 95.74 93.86 96.78 

0.80 246 11 8 77 9.41 95.72 90.59 96.85 94.44 96.86 

Table 2. Results of CSO-SOFM 

Threshold 

 

TP FN FP TN FPR 

(%) 

SEN 

(%) 

SPEC 

(%) 

PREC 

(%) 

ACC 

(%) 

Time 

(sec) 

0.20 253 4 12 73 14.12 98.44 85.88 95.47 95.32 87.85 

0.35 252 5 9 76 10.59 98.05 89.41 96.55 95.91 87.07 

0.50 251 6 6 79 7.06 97.67 92.94 97.67 96.49 87.03 

0.80 251 6 4 81 4.71 97.67 95.29 98.43 97.08 86.83 

 

optimal balance between classification accuracy and 

computational efficiency. 

The results demonstrated a clear trade-off between 

sensitivity and specificity as the decision threshold 

varies. At lower thresholds (e.g., 0.20), the system 

achieves higher sensitivity but at the cost of higher 

false positive rates and lower specificity. 

Conversely, higher thresholds (e.g., 0.80) lead to 

improved specificity and precision, reducing the 

likelihood of false positives but slightly lowering 

sensitivity. 

The optimal threshold value appears to be a balance 

between minimizing false positives and maintaining 

high sensitivity and accuracy. A threshold of 0.80 

yields the best specificity (95.29%) and precision 

(98.43%) with a slight decrease in sensitivity 

(97.67%). This threshold also provides the highest 

accuracy (97.08%), indicating its effectiveness in 

maintaining a high level of security and 

performance in multimodal biometric systems. 

The results demonstrated the superior performance 

of the Modified SOFM (CSO-SOFM) over the 

Standard SOFM across various threshold values. 

The Modified SOFM (CSO-SOFM) consistently 

achieves higher accuracy, precision, and specificity 

while maintaining lower false positive rates 

compared to the Standard SOFM. 

This result agrees with Purohit and Ajmera (2020) 

who implemented a similar multimodal biometric 

system using Gray Wolf Optimization Algorithm 

(GWOA). However, the result of the Modified 

CSO-SOFM outperformed that of Purohit and 

Ajmera, (2020) in terms of sensitivity, specificity  

andaccuracy while the record of precision and 

processing time were not extensively reported. 

Purohit and Ajmera, reported sensitivity, specificity  

and accuracy all as  91.667% while this research 

using CSO-SOFM had sensitivity as 97.67%, 

specificity as 95.29%, precision as 98.43%, 

accuracy as 97.08% at 86.83 seconds. 
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Hence, this research demonstrates the effectiveness 

of the CSO algorithm in enhancing the classification 

performance when combined with SOFM. 

CONCLUSION  

The proposed multimodal biometric access control 

system, combining ear and iris traits and utilizing an 

enhanced CSO-SOFM algorithm, indicates that the 

Modified CSO-SOFM outperforms the Standard 

SOFM in all key performance metrics, particularly 

in terms of accuracy, sensitivity, specificity, false 

positive rate and recognition time. These 

improvements suggest that the Modified CSO-

SOFM is a more reliable and efficient approach for 

enhancing access control systems with multimodal 

biometrics, and the efficient processing times also 

suggest better applicability for real-time systems. 

Future works will explore the integration of 

additional biometric traits and further optimization 

techniques to enhance system performance. 
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