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 This study introduces a soft computing approach using Artificial Neural Networks 

(ANN) for load forecasting, specifically focusing on predicting the minimum and 

maximum load power. The goal is to allocate the expected power to suitable load 

centers efficiently. The analysis utilizes a 3-year (2021 to 2023) historical dataset 

of load consumption in Lagos, a city in Western Nigeria. A Multi-layered 

Perceptron (MLP) network generates short-term load forecasts for the area. The 

inputs for the network include monthly data, while the output parameters are load 

data obtained from the Eko Electricity Distribution Company (EEDC), which are 

used to predict power needs in the geographical area. The ANN training employs 

supervised learning and the back-propagation algorithm (BPA), implemented 

using MATLAB and SIMULINK. The input and target data are preprocessed and 

normalized within the range of -1 and 1. The network is continuously trained until 

desirable regression values and a disparity graph are achieved. The study 

demonstrates significant success with regression values of 0.96, 0.97 and 0.97 

obtained over three consecutive years (2021/2022, 2022/2023 and 2023/2024) 

which indicate that the model accurately predicts the load of the year 2024. The 

developed model holds promise for independent power companies in Nigeria to 

enhance load allocation planning and forecast expected revenue. 
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INTRODUCTION 

The effective operation of any power system is 

dependent on accurate load forecasting. Making 

decisions about power generation, purchasing, energy 

planning, and system security can benefit from its 

insightful recommendations. Accurate load 

forecasting is crucial for operational decisions in 

control systems, including load demand analysis and 

help commitment decisions (Magalhães et al., 2024). 

Electric utilities can perform these tasks efficiently; 

thanks to precise load estimates, which save money on 

operation and maintenance costs and improve 

infrastructural development and power supply systems 

(Huan et al, 2020; Veeramsetty et al, 2022). Power 

consumption data that may be examined on an hourly, 

daily, weekly, monthly, and annual basis is generally 

used to evaluate load predictions (Feinberg and 

Genethliou, 2005). 

Forecasting involves estimating the future values of 

certain characteristics (Alquthami et al., 2022). 

Energy organizations strive to provide customers with 

a reliable and sufficient power supply. However, 
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power production, transmission, and distribution are 

expensive and valuable resources. On the other hand, 

load demand is not constant, it is subject to 

fluctuations because of several variables, including 

environmental factors, lack of storage space, and poor 

maintenance practices. Furthermore, it is difficult to 

forecast the precise growth in the number of clients. 

(Ali et al, 2016)  

Load forecasting can be broadly classified into three 

categories: short-term, medium-term, and long-term. 

Short-term load forecasting focuses on analyzing 

power consumption, data ranging from one hour to one 

week and it is primarily used for planning power 

generation and transmission. Medium-term forecasts 

cover a span of one week to one year and are mainly 

utilized for scheduling fuel purchases. Long-term 

forecasting involves examining consumption data for 

more than one year. It is essential for establishing and 

developing the supply and distribution system 

(Emhamed and Jyoti, 2004).  

One of the key tasks in running a power system is load 

forecasting. Since electricity is a commodity and a 

trading item, accurate forecasting is important for 

managing production and purchasing in an 

economically sensible manner for an electric utility. 

Since electricity cannot be stored, accurate forecasting 

is motivated by this fact. In Nigeria, forecasting is 

necessary to calculate the amount of energy the power 

plants must produce each day and prepare the plants 

before the production. 

Due to the persistent imbalance between demand and 

supply in the Nigeria power industry, an Electricity 

Distribution Company should be able to forecast, in 

the short to medium term, the total energy it will get 

from the National Grid so that it can plan on how to 

re-allocate the same power. Power forecasting has 

been an integral part of the planning, operation and 

maintenance of a power system most especially in the 

Nigerian power sector.  

Professor Lotfi Zadeh in 1996 introduced the concept 

of "soft computing" to make use of Consumers' 

tolerance for imperfection, uncertainty, and partial 

facts to achieve traceability, robustness, inexpensive 

solution costs, and a better relationship with actuality 

(Senthil, 2017). These include fuzzy logic, stochastic 

process, linear regression, exponential smoothing and 

data mining models. But recently, ANN has been 

widely employed for power forecasting. The domain 

of soft computing also encompasses probabilistic 

reasoning, as it provides mechanisms to handle 

randomness and uncertainty. Numerous statistical and 

soft computing techniques have been specifically 

designed to enable accurate and reliable short-term 

forecasting (Wu et al., 2022; Feng et al., 2022; Gao et 

al., 2022; Hsu and Yang, 1991)  

Various exogenous and meteorological factors make 

load forecasting a complex and challenging task Wu et 

al. (2022) highlighted the inevitability of short-term 

power load forecasting for the reliable and efficient 

operation of power systems. The study discusses 

various soft computing techniques, including neural 

networks (NN), fuzzy logic (FL), and genetic 

algorithms (GAs), for short-term load forecasting. Hsu 

and Yang (1991) proposed a new approach utilizing 

Artificial Neural Networks (ANNs) for short-term 

load forecasting. The study emphasizes the need to 

determine the hourly load pattern along with the peak 

and valley loads of the day to accurately forecast 

hourly loads. In the first phase, a neural network based 

on self-organizing feature maps was developed to 

identify days with similar hourly load patterns, 

categorizing them as the same day type. The load 
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pattern of the target day is then obtained by averaging 

the load patterns of past days that belong to the same 

day type. 

Ivana et al. (2013) and Jun et al. (2019) focused on 

enhancing the efficiency of the smart grid and 

integrating renewable energy sources to ensure 

sustainable electricity provision. To optimize energy 

usage, a multi-agent approach was proposed, 

employing load forecasting for residential demand 

response. This approach utilized Reinforcement 

Learning Agents (RLAs) to control household 

electrical devices. These agents leveraged current 

electricity load data and 24-hour load predictions to 

manage electricity consumption while maintaining 

overall demand within transformer capacity. The study 

involved simulations in a small neighbourhood with 

nine homes, each equipped with an agent-controlled 

Electric Vehicle (EV). The performance of agents 

using 24-hour load predictions was compared to those 

relying solely on current load information or operating 

without any load data. 

Park et al. (1991) introduced an artificial neural 

network (ANN) approach for electric load forecasting. 

The ANN was trained to capture the relationship 

between past, current, and future temperatures and 

loads. By interpolating load and temperature data 

within a training dataset, the ANN generated load 

forecasts. The study assessed the accuracy of these 

forecasts using actual utility data, reporting average 

absolute errors of 1.40% for 1-hour-ahead and 2.06% 

for 24-hour-ahead predictions. In comparison, an 

existing forecasting technique applied to the same data 

yielded an average error of 4.22% for 24-hour-ahead 

forecasts. These results demonstrated the superior 

performance of the ANN approach in load forecasting. 

Ajeigbe et al. (2020), Suthasinee et al. (2022), and 

Ming et al. (2023) addressed the importance of 

accurately predicting optimal domestic power peak 

demand for long-term electricity construction 

planning. The authors emphasized that precise 

predictions can help electricity suppliers reduce 

construction costs and provide customers with lower 

electricity rates. However, existing prediction methods 

still require improvement in accuracy. To address this 

challenge, the study introduced a modified Artificial 

Emotional Neural Network (AENN) based on an 

improved Jaya optimizer. Additionally, an Extreme 

Learning Machine (ELM) was incorporated to 

compute expanded features within the AENN. The 

proposed model was applied to a real case study of 

Thailand's power peak demand using a rolling 

mechanism. Comparative analyses with state-of-the-

art AENN models, including an artificial neural 

network with Levenberg-Marquardt, AENN methods 

based on the winner-take-all approach, and an 

improved brain emotional learning-based AENN 

model, demonstrated that the developed predictive 

model offered superior performance, enhanced 

stability, and improved generalization capabilities. 

Overall, the proposed model showed significant 

potential in improving the accuracy and effectiveness 

of predicting optimal domestic power peak demand. 

Seung (2009) and Duan (2022) presented a method for 

mid-term daily peak load forecasting using a recurrent 

artificial neural network (RANN). While artificial 

neural network (ANN) algorithms are commonly 

applied to short-term load forecasting, these studies 

addressed the challenges associated with long-term 

and mid-term forecasting, including limited training 

data and accumulated errors over extended estimation 

periods. The proposed method introduced a structure 

that replaced input data for special days and 
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incorporated a recurrent-type neural network. The 

RANN demonstrated strong performance in 

estimating sudden and nonlinear increases in demand, 

particularly during heat waves. Case study results 

using load data from South Korea highlighted the 

effectiveness of the proposed RANN model. 

Building on the gaps identified in the reviewed 

literature, this research aims to develop an ANN-based 

application for forecasting grid load consumption 

using available load data from the Enugu Electricity 

Distribution Company (EEDC) in Lagos State, 

Nigeria. The anticipated outcomes of this research 

include improved equipment maintenance scheduling, 

reduced manpower requirements, enhanced revenue 

forecasting for EEDC, and better planning for load 

allocation to customers. Additionally, the system will 

enable EEDC to make informed adjustments to load 

distribution based on the expected power supply 

(MW) from the Transmission Company. 

Artificial Neural Network Model  

This study includes a thorough analysis and evaluation 

of related works. It analyzes the load forecasting 

techniques that are already used and accepted before 

attempting to develop a new technique using ANNs. 

The proposed model is used to simulate the load 

parameters of a power utility in Nigeria and apply 

artificial neural networks to forecast its future loads.  

The design uses a set of load data for neural network 

training and testing as illustrated in Figure 1.  The 

better ANN model for this research will then be given 

and described after the ANN training and 

optimization. With the activation function (f) applied 

to the weighted sum of inputs, the given ANN model 

will be effective and of good stability and adaptability 

when applied to achieve the desired result. 

 

Figure 1: A neuron showing the input (𝑥1 − 𝑥𝑛) , their 

corresponding weights (𝑤1 − 𝑤𝑛), a bias (b) and 

activation function (f) applied to the weighted sum of 

inputs 

The implementation is developed by simulating the 

developed model using MATLAB 9.7 R2019b 

(MathWorks, 2021) i.e. using proper training and 

learning algorithms based on a comprehensive dataset, 

and the different importance of every influencing 

factor can be directly gotten from its different net 

weight.  Also, application programs and software 

packages proved very essential. These include 

Microsoft Office Word and Microsoft Excel. 

Database of ANNS. 

The data used in this work was obtained from the 

database of EEDC. The data shows the daily 

minimum, maximum and average load consumed. It 

spans over three years (Jan, 2021-Dec, 2023). 

Quality of the data set. 

EEDC is a utility company, which has nine (9) sub-

business units under its control. Each sub-business 

unit gathers the data received from the grid daily and 

sends them to the main headquarters for collation. For 

this work, the data gathered is sufficient for data 

training. An expanded database incorporating more 

input, in turn, would provide for a more complete 

adaptability of the network.  
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Going through the data gathered, some days have zero-

megawatt (0MW), which means that there was a 

system collapse. These days are considered and taken 

care of by proper re-arrangement process. 

Properties of the Lagos load curve. 

In Nigeria, there exist two main seasons. These are the 

Dry season and Rainy/Wet seasons. The dry season 

spans from November to April of the following year 

while raining/wet season spans from May to October 

(Nigeria, 2023). The load consumed from the grid 

varies from season to season, day to day, week to 

week, month to month and year to year as shown in 

Figure 2. 

In this work, the load curve to be forecasted consists 

of daily load values, with their daily averages. This 

means that the power curve can be seen as a day series 

of real numbers, each being the average of one day 

(Liao et al, 2019; Yu et al., 2019). Although the 

number of observations is restricted to 31 days per 

month, the model can be applied with slight 

modifications to cases where the interval between 

observations is shorter. The daily electric load 

consumed from the grid is used throughout this work 

as the test case. The data ranges from Jan. 2021 to Dec. 

2023. The load curve over one year is shown in Figure 

2. The seasonal trend can be seen; in the Dry season, 

the average power received is about twice as high as 

in the rainy season. The extent of this property is a 

special characteristic of EEDC’s load conditions, and 

it is due to the differences between the weather seasons 

of the year. The working day-weekend pattern 

followed by the majority of generating stations is 

where the weekly rhythm gets its start. Customers 

often use more electricity during the weekdays than 

they do on weekends and holidays (Wu et al., 2023), 

which results in a larger load consumption (Zhu et al., 

2021; Yu et al., 2019). 

 

Figure 2: Curve representing power consumed from 

the grid for the year 2023 (Jan.-Dec.) 

Figure 3 displays the load for two consecutive weeks 

from March 27 to April 10, 2023. The shapes start with 

nearly five remarkably similar patterns, which are the 

load curves from Monday through Friday. Then come 

two distinct Saturday and Sunday patterns. This 

weekly pattern keeps repeating itself. On the other 

hand, the daily rhythm is the outcome of consumers 

acting in unison throughout the day. Since most 

Consumers sleep at night, the burden is minimal then. 

The majority of consumers also frequently engage in 

multiple activities at once throughout the day (viewing 

TV, working computers, etc.). Over the year, the daily 

pattern varies. Figure 4 displays the load curves on 

average Tuesdays at various times of the year. 

 

Figure 3: The load consumed over the period March 

27th – April 10th, 2023. The first day is Monday. 
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Variations naturally occur between days within the 

same season, as illustrated in Figure 4. Consequently, 

power forecasting often categorizes days into different 

types, each with distinct load patterns.  

 

 

Figure 4: The load charts of four Tuesdays at different 

seasons. 

The load curves on Saturdays and Sundays differ from 

those on other days, while Mondays and Fridays are 

sometimes separated from other working days due to 

the minimal impact of the weekend on electricity 

consumption from the grid. The classification of 

festive periods, such as Eid-el-Fitr, Christmas, and 

other special days, presents a greater challenge. In 

some cases, these days are grouped with Sundays; 

however, their load profiles can vary significantly 

(Hsu and Yang, 1991). This is depicted in Figure 4. 

The load drawn from the grid throughout the year 2021 

to 2023 is used as our forecasting data in this work. 

The MLPNN technique used by the MATLAB 

program codes to execute these data (in Microsoft 

Excel Format) is demonstrated in the next section. 

The ANN Training Dataset 

To construct input/target pairs for the NN, the 

historical data load parameter values (collected by the 

EEDC, Lagos, Nigeria) were used in the 

MATLAB/SIMULINK environment. The network 

was given the created training dataset, which is 

depicted in Table 1. The target (t) represents the load 

data to be projected, whereas the input (p) represents 

the months in each year. 

Table 1: Training dataset for the ANN (i.e., Input fed 

into the network) 

Months of the 

Year (2021) 

Months of the 

Year (2022) 

Months of the 

Year (2023) 

1 1 1 

2 2 2 

3 3 3 

4 4 4 

5 5 5 

6 6 6 

7 7 7 

8 8 8 

9 9 9 

10 10 10 

11 11 11 

12 12 12 

 

RESULTS AND DISCUSSIONS 

The LM method (trainlm) was utilized in this research 

since it is a quick training algorithm for networks of a 

reasonable size (Duan, 2022). For use when the 

training set is huge, it offers a memory reduction 

feature. The following graphs and outcomes were 

produced by this algorithm: 
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The disparity graph 

This demonstrates the degree of disparity between the 

desired output (i.e., the projected data) and the 

simulated (ANN) output (i.e., the predicted results). 

The charts and tables with their corresponding values 

are shown in Figures 5a, 5b and 5c and Tables 3a, 3b 

and 3c respectively. 

 

 

     Figure 5a: The Disparity Graph for Year 2021/2022 

 

 

Figure 5b: The Disparity Graph for Year 2022/2023 

Table 2: Target (MW) (i.e. the corresponding results of 

each fed input) 

Year 2022 Target 

‘t’ 

Year 2023 

Target ‘t’ 

Year 2024 

Target ‘t’ 

Max 

(MW) 

Min 

(MW) 

Max 

(MW) 

Min 

(MW) 

Max 

(MW) 

Min 

(MW) 

321.43 68.82 327.33 67.72 335.53 70.65 

324.52 59.7 318.97 60.87 323.93 64.93 

373.79 81.62 319.15 69.83 319.86 72.47 

318.62 47.58 309.66 77.57 308.91 55.61 

264.34 60.62 262.18 61.64 269.94 65.24 

182.07 21.53 186.80 19.36 188.77 19.49 

130.1 21.6 176.98 6.67 178.34 7.96 

235.38 31.67 231.72 37.24 206.32 37.82 

276.26 62.47 269.72 50.41 265.94 47.39 

274.81 47.69 290.38 63.67 271.74 80.13 

347.2 133.45 334.27 120.67 333.99 118.89 

354.1 156.79 358.25 159.62 350.53 153.94 
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Figure 5b: The Disparity Graph for Year 2022/2023 

Table 3a: The disparity table between the target and 

the forecasted output for the year 2021/202 

Data for 2021 

Target 
 

Forecast for 2022 

 (ANN Output) 
 

Max 

(MW) 

Min 

(MW) 

Max 

(MW) 

Min 

(MW) 

321.43 68.82 327.3322 67.7178 

324.52 59.7 318.9665 60.8664 

373.79 81.62 319.1515 69.8322 

318.62 47.58 309.6565 77.5679 

264.34 60.62 262.1798 61.6423 

182.07 21.53 186.7991 19.363 

130.1 21.6 176.9763 6.665 

235.38 31.67 231.7186 37.2364 

276.26 62.47 269.7179 50.409 

274.81 47.69 290.3817 63.6669 

347.2 133.45 334.2738 120.6746 

354.1 156.79 358.2485 159.6192 

 

 

Figure 5c: The Disparity Graph for Year 2023/2024  

Table 3b: The disparity table between the target and 

the forecasted output for the year 2022/2023 

Data for 2022                              

Target 

Forecast for 2023 

 (ANN Output) 

Max (MW) Min 

(MW) 

Max 

(MW) 

Min 

(MW) 

327.3322 67.7178 335.53 70.65 

318.9665 60.8664 323.93 64.93 

319.1515 69.8322 319.86 72.47 

309.6565 77.5679 308.91 55.61 

262.1798 61.6423 269.94 65.24 

186.7991 19.363 188.77 19.49 

176.9763 6.665 178.34 7.96 

231.7186 37.2364 206.32 37.82 

269.7179 50.409 265.94 47.39 

290.3817 63.6669 271.74 80.13 

334.2738 120.6746 333.99 118.89 

358.2485 159.6192 350.53 153.94 
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Table 3c: The disparity table between the target and 

the forecasted output for the year 2023/2024 

Data for 2023 

Target 

Forecast for 2024 

(ANN Output) 

Max 

(MW) 

Min 

(MW) 

Max 

(MW) 

Min 

(MW) 

335.53 70.65 329.46 72.24 

323.93 64.93 320.45 69.71 

319.86 72.47 310.11 57.93 

308.91 55.61 351.81 101.64 

269.94 65.24 270.55 66.43 

188.77 19.49 188.49 18.85 

178.34 7.96 178.46 6.1 

206.32 37.82 207.38 39.2 

265.94 47.39 265.99 49.58 

271.74 80.13 273.33 82.01 

333.99 118.89 338.1 124.41 

350.53 153.94 331.69 154.82 

 

The relationship or similarity between the outputs and 

the targets is indicated in this section. The network was 

constantly trained after the initial input and output data 

were introduced until a good regression value was 

obtained. For the subsequent years, this was done 

similarly. For the years 2021–2022, 2022–2023, and 

2023–2024, R is equal to 0.96, 0.97, and 0.97, 

respectively. The degree to which the outputs and 

targets are connected and changed together is depicted 

in Figure 6 as 96%, 99%, and 97%, respectively.  Table 

4 shows mathematical models generated by the 

network which can be used to predict the load using 

past historical data. 𝑓(𝑥) represents each historical 

power (Maximum and minimum) and x represents the 

months of the year which serves as input. 

 

Table 4: Mathematical models used to predict Load for 

years 2022, 2023 and 2024 respectively. 

S/N Year Mathematical model 

1 2021/2022 𝑓(𝑥) = 𝑝1𝑥3 + 𝑝2𝑥2 +

 𝑝3𝑥1 + 𝑝4  

𝑝1 = −0.01703,

𝑝2 = 2.741,

𝑝3 = −113.7  𝑎𝑛𝑑 𝑝4

= 1578 

𝑮𝒐𝒐𝒅𝒏𝒆𝒔𝒔 𝒐𝒇 𝑭𝒊𝒕  

𝑆𝐸𝐸: 𝐴 = (0.77)𝑇 + (63)  

R-square: 0.96 

2 2022/2023 𝑓(𝑥) = 𝑝1𝑥3 + 𝑝2𝑥2 +

 𝑝3𝑥1 + 𝑝4  

𝑝1 = −0.00006366, 𝑝2 =

0.07518, 𝑝3 =

−2.185  𝑎𝑛𝑑 𝑝4 = 123.8  

𝑮𝒐𝒐𝒅𝒏𝒆𝒔𝒔 𝒐𝒇 𝑭𝒊𝒕  

𝑆𝐸𝐸: 𝐴 = (1)𝑇 + (75)  

R-square: 0.99 

3 2023/2024 (𝑥) = 𝑝1𝑥3 +  𝑝2𝑥2 +

 𝑝3𝑥1 + 𝑝4  

𝑝1 = −0.02078,

𝑝2 = 4.775,

𝑝3 = −127.8  𝑎𝑛𝑑 𝑝4

= 1760 

𝑮𝒐𝒐𝒅𝒏𝒆𝒔𝒔 𝒐𝒇 𝑭𝒊𝒕  

𝑆𝐸𝐸: 𝐴 = (0.987)𝑇 +

(68)  

R-square: 0.97 

 

Summary of Findings 

From the aforementioned findings, Table 4 shows the 

three mathematical models obtained by carrying out a 

curve-fitting analysis using the MATLAB tool 

application. This was followed by an identical curve 

fitting procedure to validate the previously forecasted 

load using MATLAB codes. All the results obtained 

were found to be equivalent. Figure 5(a-c) graphically 

illustrates how the measured output data fitted the 

predicted mathematical model. 
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Figure 6: Regression graph for years 2021/2022, 

2022/2023 and 2023/2024 

It can be further shown that the predicted power during 

the rainy season differs from that during the dry 

season. The amount of power provided by the grid 

during the dry season, from November to April, is 

more during the rainy season; from May to October. 

This should be considered in addition to learning what 

to anticipate from the grid in the coming years. 

Overall, this shows a high level of accuracy in neural 

networks' capacity to predict power. The optimal 

Linear Fit equation, A = (1) T + (75), can be used to 

represent the provided artificial neural network 

regression model (ANNRM). According to this 

equation, the output variable A is predicted using a 

linear relationship with the input variable T. T is 

multiplied by a weight of 1, and a constant bias term 

of 75 is also added. 

An artificial neural network is used in this regression 

model to determine the relationship between the input 

variable T and the output variable A. A set of input-

output pairs with the matching values of T and A are 

used as training data to train the neural network. The 

neural network modifies its internal parameters, such 

as weights and biases, during the training phase to 

reduce the discrepancy between the projected output 

and the actual output. 

To forecast values for unknown inputs, the neural 

network regression model seeks to capture the 

underlying patterns and correlations between T and A. 

The model implies a direct proportionality between T 

and A by employing a linear connection with a weight 

of 1. The bias term of 75 denotes an output offset that 

is inserted as a constant and may be used to adjust any 

systemic or baseline effects. 

CONCLUSION 

The results obtained from carrying out this study 

confirmed the relevance as well as the efficiency of 

neural networks in power supply prediction. The ANN 

approach has proved to be accurate and 

computationally fast. The use of normalized 

preprocessing and post-processing techniques proved 
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undoubtedly essential for the overall performance of 

the ANN. 

The training algorithm used, usually applicable to 

function approximation problems, trained the NN on 

average, about much faster than the usual BPAs. 

However, it must be noted that the algorithm described 

and used to execute this work is not for pattern 

recognition problems or tasks involving very large 

numbers of weights. What happens is that a relatively 

poor performance could result and the intended goal of 

prediction may appear erratic. 

It is recommended that all of the nation's universities 

be encouraged to implement thorough research on 

ANN applications. It is important to instill in students 

an understanding of how simple it is to use ANN to 

anticipate the weather, electricity loads, stock market, 

and other events. Additionally, a more thorough 

investigation of this study could explore other factors 

of power supply. An ANN can be used, for example, 

to control the speed and position of a DC motor. To 

determine which method is the most effective, all 

currently used approaches for forecasting the 

availability of electricity should be reviewed and 

contrasted with the ANN approach.  
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