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 Detection of diabetic retinopathy (DR) as early as possible is vital in mitigating the 

complicated issues associated with the disease. Recent advances in artificial 

intelligence (AI), particularly deep learning (DL) techniques, have led to an 

appreciable increase in the accuracy of predicting various disease classes. 

However, the challenge of AI models is the difficulty in providing insights into 

how and why a model arrives in attaining decision-making to facilitate trust and 

adoption in clinical settings. Therefore, this study aimed to enhance the detection 

rate of DR and explain the significant regions on the image for the model's overall 

performance. This study utilised Convolutional Neural Networks (CNN), Long 

Short-Term Memory (LSTM) networks, Simple Recurrent Neural Networks 

(SRNN), and XGBoost in an ensemble model (EM). Specifically, Shapley Additive 

exPlanations (SHAP), a popular Explainable Artificial Intelligence (XAI) 

technique was utilised to identify and provide insights into which parts of the 

image's features contribute to the model's overall performance. After a series of 

experiments using the APTOS 2019 eye pack dataset collected from the Kaggle 

repository to evaluate the performance of CNN, LSTM, SRNN, and XGBoost. The 

EM outperformed all the other models with 95.63% accuracy, 97.79% precision, 

93.64% recall rate, 98.79% F1-score and 97.75% AUC score. Also, SHAP analysis 

revealed significant regions on the image that influenced predictions, thus 

showing how important interpretability was for the model. The results imply that 

the ensemble DL, particularly with XGBoost, enhances the detection of DR, 

thereby improving the efficiency of screening tests and supporting personalised 

treatment plans in clinical practice through integrating these advanced models 

with XAI tools, creating trust towards automated diagnostic systems. 
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INTRODUCTION 

The eye's retina depends on blood vessels to deliver 

oxygen and nutrients. The situation gets worse for 

such patients since raised blood sugars contained in 

diabetes mellitus can damage the blood vessels 

(Dubey and Lohiya, 2021). Prolonged high glucose 

levels weaken the retina's blood vessels, causing 

fluid leakage, bulging, or the growth of abnormal 

blood vessels (Donthula and Daigavane, 2024). 

These changes can result in vision loss and progress 

into diabetic retinopathy (DR) (Mehboob et al., 

2022). Research has shown that DR affects 

approximately one in every three of the over 463 

million people living with diabetes worldwide (IDF, 

2023). Men are slightly more likely to develop DR, 

with an estimated prevalence of 9.0% compared to 

7.9% in women (Mohanty et al., 2023). The 

projection of those affected by DR in the years 2030 

and 2045 is estimated to be approximately 643 

million and 783 million people, respectively, with 
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India and China leading (Kumar et al., 2024). The 

most extreme form of DR often shows no symptoms 

in its early stage. It is, therefore, essential to have 

retinal screening performed regularly. The methods 

of diagnosis include licensed practitioners who are 

generally ophthalmologists meticulously 

scrutinising the retina under a bright light, which is 

allowed after anaesthesia of the eye muscle 

controlling the lens. It is essential to identify the 

condition in good time to stop further vision 

impairment in the patients. There are two stages in 

the development of DR: Non-proliferative Diabetic 

Retinopathy (NPDR) and Proliferative Diabetic 

Retinopathy (PDR). The NPDR, the early stage 

type, presents stage one symptoms such as micro-

neurism or the development of small bulges in the 

retina blood vessels, which can lead to fluid 

accumulation and diffusion vision. If untreated, 

NPDR can progress to PDR, a more severe stage 

involving chronic damage and significant vision 

impairment, highlighting the importance of timely 

treatment and routine eye examinations (Yadav et 

al., 2021). Figure 1 highlights DR's progression 

from NPDR to PDR stages. 

Computer-Aided Diagnostic Systems (CAD) play 

an important role in health care systems, as such 

cost-effective procedures work for various diseases 

such as DR using colour fundus images (Memari et 

al., 2020). Those systems can rapidly determine 

such features as the segmentation of the vessel and 

some characteristics of the optic disc, which assist 

physicians in making decisions concerning 

diagnosis and treatment. Medical imaging now 

heavily relies on advanced tools such as deep 

learning (DL), a sophisticated subset of machine 

learning. One of the significant challenges in 

applying deep learning approaches for DR 

classification is determining the most effective 

Convolutional Neural Network (CNN) model for 

both binary and multi-class classification (Sarki et 

al., 2021). In binary classification, normal retinas 

are distinguished from diseased ones, whereas 

multi-class classification involves categorising up to 

five stages of DR progression (Adriman et al., 2021; 

Dai et al., 2024). Research indicates that the use of 

combined and preprocessed data has a significant 

impact on improving classification accuracy. 

Ensemble Modelling (EM) improves the prediction 

response by gathering the results obtained from 

various models. Examples in this category include 

the Bagging method (e.g., Random Forest), the 

Boosting method (e.g., AdaBoost), Stacking and 

voting. These approaches use various models to 

capture complex datasets for the problem at hand 

(Macsik et al., 2024). Despite significant 

advancements in medical imaging and deep 

learning, DR detection remains challenging, 

especially in translating AI-driven models into real-

world healthcare (Yao et al., 2024). While ML 

models show high diagnostic accuracy, their limited 

interpretability hinders adoption (Antoniadi et al., 

2021). Medical professionals require diagnostic 

outputs and insights into the reasoning behind 

predictions. Without transparency, healthcare 

providers are reluctant to trust AI models in critical 

cases like DR (Tucci et al., 2022).   

Explainable Artificial Intelligence (XAI) enhances 

transparency in AI systems, which is critical for 

healthcare applications. Two widely used model-

agnostic techniques in XAI are Local Interpretable 

Model-agnostic Explanations (LIME) and SHapley 

Additive exPlanations (SHAP). These methods 

provide interpretable explanations for predictions, 

thereby improving trust and dependability in AI 

models (Arrieta et al., 2020; Man and Chan, 2021). 

The two XAI techniques rely on a model’s internal 

structure and can be employed to ensure informed 

decision-making in fields where AI has significant 

impacts, such as medical diagnosis and finance.   
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Explainability is crucial in high-stakes medical 

scenarios, where understanding model predictions is 

central to decision-making (Kovalchuk et al., 2022). 

Additionally, AI systems often need to provide a 

comparative diagnostic rationale, leaving clinicians 

unable to explain clearly to patients (Kaur et al., 

2020). Variability in disease states and imaging 

equipment further complicates model development, 

as deep learning models trained on controlled 

datasets may perform inconsistently on external data 

(Zhang et al., 2022).   

This study proposes an EM model with XAI to 

predict DR among patients affected with diabetes 

and subsequently highlight critical image regions 

influencing predictions. More specifically, the 

ensemble approach combining CNN, long short-

term memory (LSTM), simple recurrent neural 

networks (SRNN), and XGBoost could enhance DR 

detection accuracy and reliability (Sikder et al., 

2021). Integrating XAI into these models is vital for 

achieving clinically actionable and interpretable 

outcomes. 

RELATED WORKS  

Tymchenko et al. (2020) introduced a CNN-based 

approach for DR detection utilising a multistage 

transfer learning technique. Their method was 

adapted to the APTOS 2019 Blindness Detection 

Dataset, comprising approximately 13,000 fundus 

images, to predict various DR stages. The model 

achieved impressive sensitivity and specificity of 

0.99 each, with a Kappa score of 0.925466, 

indicating strong agreement between predicted and 

actual DR stages. A notable strength of this method 

is its precision in distinguishing DR stages. 

However, the study highlighted challenges, 

including the limited availability of affordable 

labeled datasets and labeling inconsistencies among 

specialists, which could compromise the training 

data quality. Despite these challenges, the CNN-

based approach demonstrated high accuracy, 

advancing the applicability of automated DR 

detection in medical diagnostics. 

Khan et al. (2021) developed the VGG-NiN model, 

which combines features from VGG16, Spatial 

Pyramid Pooling (SPP), and Network in Network 

(NiN). The hybrid architecture aimed to enhance 

classification performance and reduce 

computational demands for DR stage detection. The 

VGG-NiN model achieved an accuracy of 79.50%, 

while a comparison with DenseNet121 

demonstrated a significantly higher accuracy of 

97.30%. Although DenseNet121 outperformed 

VGG-NiN in accuracy, the latter offered 

computational advantages critical for real-time 

medical applications. The study underscored the 

importance of designing models that balance 

accuracy and efficiency, contributing to developing 

automated DR classification systems optimised for 

resource-constrained environments. 

Mushtaq and Siddiqui (2021) proposed a robust DR 

detection and classification system using DenseNet-

169 architecture, validated on the Diabetic 

Retinopathy Detection 2015 and APTOS 2019 

datasets. The model achieved an accuracy of 78%, 

demonstrating its capability to classify DR stages. 

While the accuracy fell short of expectations, the 

study emphasized the system's potential for real-

world application due to its feature reuse 

mechanism, which reduced computational 

overhead. This work highlighted the importance of 

creating scalable, efficient systems for early DR 

detection, a critical factor in timely treatment and 

vision restoration. 

Bora et al. (2021) designed a DL model for 

assessing DR risk and tailoring screening intervals. 

Using the EyePACS dataset, the model achieved 

AUCs of 0.79 (internal validation) and 0.70 

(external validation). Performance improvements 
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were observed with the inclusion of additional risk 

factors, enhancing the model's ability to predict DR 

progression. However, external validation 

highlighted dataset bias and the reliance on specific 

risk factors, which posed challenges for clinical 

applicability. Despite these limitations, the study 

contributed to advancing individualized DR risk 

prediction and optimising screening strategies. 

Dai et al. (2021) developed the DeepDR system for 

DR detection and grading, trained on 466,247 

fundus images and tested on 200,136 local and 

209,322 external images. The model achieved AUC 

values between 0.943 and 0.972 for DR grading, 

showcasing its robustness and flexibility. Designed 

for near real-time detection, DeepDR proved 

effective for mass screening and clinical use. While 

the study emphasized its high performance and 

potential for clinical integration, it also highlighted 

the need for further validation to ensure widespread 

applicability in diverse healthcare settings. 

Atwany et al. (2022) reviewed DL techniques for 

DR detection, covering supervised and self-

supervised learning methods and emerging Vision 

Transformer architectures. The review highlighted 

Vision Transformers' ability to model long-range 

dependencies and improve classification accuracy. 

Moreover, self-supervised learning is a strategy to 

reduce the reliance on large annotated datasets. This 

work offered valuable insights into the evolving 

landscape of DR detection, emphasizing advanced 

methods for enhancing accuracy and efficiency. 

Ruamviboonsuk et al. (2022) developed a deep 

learning system for DR screening, achieving 94.7% 

accuracy, 91.4% sensitivity, and 95.4% specificity 

on Thailand's national diabetes registry. The study 

demonstrated the system's effectiveness in 

community settings, comparable to retinal 

specialists. However, the authors noted that 

successful deployment requires addressing 

socioenvironmental factors, including healthcare 

localisation and staff education. The research 

highlighted the potential of AI for DR screening in 

resource-constrained regions while emphasizing the 

importance of systemic adaptations for successful 

implementation. 

Tejashwini et al. (2022) employed a CNN model for 

DR detection, achieving 81% accuracy. The study 

introduced explainable AI techniques to enhance 

transparency and user trust while addressing privacy 

concerns through robust data protection measures. 

These efforts improved the model's acceptance and 

usability in healthcare environments. The study 

demonstrated the value of combining accuracy, 

explainability, and privacy in designing AI-driven 

medical diagnostic systems. Mohanty et al. (2023) 

explored hybrid models combining VGG16, 

XGBoost, and DenseNet121 for DR detection using 

the APTOS 2019 dataset. While the hybrid model 

achieved 79.50% accuracy, DenseNet121 

outperformed it with 97.30% accuracy, highlighting 

the benefits of deeper architectures for extracting 

complex image features. The study also introduced 

an app for rapid DR detection, emphasizing the 

importance of early diagnosis and treatment in 

reducing vision loss and healthcare costs. Alwakid 

et al. (2023) leveraged image enhancement 

techniques, including Contrast Limited Adaptive 

Histogram Equalization (CLAHE) and Enhanced 

Super-Resolution Generative Adversarial Network 

(ESRGAN), to improve DR detection using 

Inception-V3. The model achieved 98.7% accuracy 

with enhanced images compared to 80.87% without 

enhancement. This work demonstrated the critical 

role of image preprocessing in improving model 

performance and emphasized its potential for 

accurate and reliable DR detection. 

Hussain et al. (2023) developed a sophisticated 

deep-learning ensemble model of ResNet50 and 

InceptionV3 that automatically detects DR from 
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retinal fundus images. It was validated against the 

DIARETDB1 database and obtained a 

commendable accuracy level of 98.37%, which 

demonstrates effectiveness in overcoming obstacles 

of speed and precision associated with DR 

detection. Dai et al. (2024) introduced DeepDR 

Plus, a system for predicting DR progression and 

recommending personalized screening intervals. 

The model showed excellent predictive capability 

with concordance indices ranging from 0.754 to 

0.846. By addressing individual progression risks, 

DeepDR Plus optimised resource allocation and 

care efficiency, advancing the integration of 

personalised medicine in DR management. 

The reviewed studies demonstrate significant 

progress in DR detection and classification using 

deep learning methods. Key advancements include 

the integration of novel architectures, transfer 

learning, image enhancement techniques, and 

personalised screening strategies. However, 

challenges such as dataset bias, labeling 

inconsistencies, privacy and model transparency 

concerns remain, underscoring the need for 

continued research to refine these systems for 

clinical and real-world applications. 

METHODOLOGY 

This section describes the methodology of the 

proposed system for detecting DR by incorporating 

ensemble deep learning models with XAI to make 

them more explainable.  

Data Collection  

The Asian Pacific Tele-Ophthalmology Society 

(APTOS) 2019 Eyes Pack dataset used for this study 

was obtained from Kaggle and comprised of  3,662 

fundus images: 1,805 No DR, 370 Mild DR, 999 

Moderate DR, 193 Severe DR, and 295 Proliferative 

DR. Photographic images of both eyes were 

captured in 224 × 224-pixel resolution. 

Pre-processing of Image Data 

In the preprocessing stage, the initial multiclass 

labels in the dataset were transformed into binary 

labels. The images were then dimensioned to 

128×128 pixels, with their pixel values centered 

within a range from 0 to 1. Further, the data was 

randomly divided into training and test data sets in 

the ratio 70:30, respectively, while stratified 

sampling ensured even distribution across classes 

within both sets. The Synthetic Minority 

Oversampling Technique was applied to the issue of 

class imbalance since the method developed 

additional samples for the under-represented 

classes. Further, the Image Data Generator was used 

to increase the training data and random 

augmentations, such as rotation, shifting, shearing, 

zooming, and horizontal flipping. For DR detection 

with XAI, these preprocessing steps got everything 

to a properly grounded level for the training and 

testing of the ensemble DL models.  

Classification Models  

Classification models are a category of ML 

algorithms specifically crafted to allocate 

predefined labels or categories to input data, relying 

on its distinctive features. These models find 

widespread application in various tasks, including 

but not limited to spam detection, image 

recognition, and sentiment analysis. Below are the 

classification models applied in this research: 

Convolutional Neural Networks 

The CNNs are types of neural network architectures 

designed to execute tasks that handle data in a grid-

like fashion, such as images. They have become 

instrumental in image recognition, object detection, 

and other computer vision applications. Major 

constituents of CNNs include convolutional layers, 

pooling layers, and fully connected layers. A 

summary of the mathematical foundation that 

supports CNNs is given as follows: 
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The convolutional layer serves as the foundational 

element in a CNN, executing convolution 

operations on input data using adaptable filters or 

kernels. Given an input tensor (X) and a filter (W), 

the convolution operation can be articulated as: 

(𝑋 × 𝑊)𝑖,𝑗 =  ∑ 𝑚 ∑ 𝑛 𝑋(𝑖+𝑛)/𝑊𝑚,𝑛   (1) 

where (i) and (j) denote the output feature map's 

spatial indices, while (m) and (n) iterate over m and 

n are over the filter dimensions. Note that the 

operation between the filter and the local region of 

the input consists of element-wise multiplication 

followed by summation. 

Long Short-Term Memory 

The LSTM is a Recurrent Neural Networks (RNNs) 

category designed to capture long-term 

dependencies and address the vanishing gradient 

problem. Long Short-Term Memory features a more 

complex architecture than traditional RNNs, 

incorporating specialized memory cells to store and 

manage information over time. The forget gate (𝑓𝑡) 

dictates which information from the previous cell 

state (𝑐𝑡−1) should be omitted. 

𝑓𝑡  =  𝜎 (𝑊𝑓 . [ℎ𝑡 − 1, 𝑥𝑡]  + 𝑏𝑓)        (2) 

The input gate (𝑖𝑡) determines which new 

information from the input (𝑥𝑡) should be 

incorporated into the cell state. 

𝑖𝑡 =  𝜎 (𝑊𝑖 . [ℎ𝑡 − 1, 𝑥𝑡]  +  𝑏𝑖)    (3) 

The output gate (ot) determines which information 

from the current cell state (ct) should be utilised to 

compute the hidden state. 

 𝑜𝑡 =  𝜎 (𝑊𝑜. [ℎ𝑡 − 1, 𝑥𝑡]  + 𝑏𝑜)      (4) 

Where: 

 (𝑊𝑓, 𝑊𝑖, 𝑊𝑜) denote weight matrices. 

 (𝑏𝑓, 𝑏𝑖, 𝑏𝑜) represent bias vectors. 

 (σ) corresponds to the sigmoid activation function. 

 ([ℎ𝑡 − 1, 𝑥𝑡]) signifies the concatenation of the 

previous hidden state and the current input. 

Recurrent Neural Network 

The RNN represents a neural network architecture 

specifically crafted for processing sequential data, 

incorporating information from previous time steps. 

The mathematical expressions for a basic RNN are 

outlined below: 

Given (𝑥𝑡) as the input at time (t) and (ℎ𝑡) as the 

hidden state at time (t), with (𝑊𝑖ℎ) denoting the 

weight matrix for input-to-hidden connections, 

(𝑊ℎℎ) representing the weight matrix for hidden-to-

hidden connections, and (𝑏ℎ) serving as the bias 

vector for the hidden layer, the equations governing 

a simple RNN are: 

ℎ𝑡 = tanh(𝑊𝑖ℎ . 𝑥𝑡 + 𝑊ℎℎ . ℎ𝑡−1 +  𝑏ℎ)         (5) 

Where: 

𝑊𝑖ℎ corresponds to the weight matrix for input-to-

hidden connections. 

𝑊ℎℎ  represents the weight matrix for hidden-to-

hidden connections. 

𝑏ℎ is the bias vector for the hidden layer.  

tanh designates the hyperbolic tangent activation 

function.  

Extreme Gradient Boosting 

Extreme Gradient Boosting stands out as a widely 

used ML algorithm applicable to regression and 

classification tasks. The mathematical 

representation of XGBoost involves an objective 

function, fine-tuned during the training process. For 

the binary classification task, akin to logistic 

regression, the objective function is articulated as 

follows:  

 

In the context of a training dataset(𝑥𝑖 , 𝑦𝑖), where 𝑥𝑖 

denotes the features and , 𝑦𝑖  is the binary label (0 or 

1), the XGBoost objective function comprises the 
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summation of the logistic loss and a regularisation 

term: 

Objective =  ∑ 𝑖 + ∑ 𝑘   (6) 

Where: 

∑ 𝑖 = Summation of the logistic loss 

∑ 𝑘= Summation of the regularisation term 

 

SHapley Additive exPlanations 

SHapley Additive exPlanations (SHAP) is a 

framework designed to explain the outcomes of ML 

models. A method emanating from cooperative 

game theory equitably distributes contributions to 

the various features toward making a prediction; 

SHAP values answer the question: "For a given 

prediction, what is the contribution of each feature 

to that prediction?" In ML, SHAP values extend the 

above concept to feature attributions. They provide 

a way of unbiasedly distributing the value of the 

prediction across the input features. Given a 

prediction, the SHAP values enumerate the average 

contribution of each feature across all possible 

coalitions of features. This considers all possible 

subsets of features in computing the average 

contribution of each feature to every possible 

coalition. Consequently, the SHAP values for each 

feature are computed as the expected value of its 

marginal contribution across all combinations of the 

features. The Shapley value computes the 

contribution of a feature to be the average one. 

In a very intuitive and transparent way, SHAP 

values convey the contribution of every feature 

toward the model's prediction on a given instance. 

Large positive SHAP values mean a value has a 

substantial positive contribution toward the 

prediction, whereas large negative values mean a 

strong negative contribution. 

The Mathematical model for each of the features i is 

depicted in equation 3.12.  

∅𝑖 =  ∑
|𝑆|!(|𝑁|−|𝑆|−1)!

|𝑁|!
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] 𝑆⊆𝑁{𝐼}  (7) 

Where; 

N = Set of all features  

i = specific feature from the set of all possible 

features N 

S = Subset of N which does not include feature i  

|S| = The number of features in subset S 

f(S) = The prediction from the model using the 

subset feature without considering the feature i 

𝑓(𝑆 ∪ {𝑖}) = The prediction from the model using 

the subset feature plus the feature i 

∅𝑖 = The Shapley value for the feature i 

Experimental Setup 

The Adam Optimiser was used to train all the 

models with a learning rate of 0.0001, a batch size 

of 25, and a maximum of 20 epochs. ReLU 

activation was turned on for hidden layers of the 

CNN, and finally, the Sigmoid function was 

activated at the output of the network, which had 

two hidden layers comprising 32 and 64 neurons, 

respectively, together with the dense layer. The 

Sigmoid function was utilised, and the configuration 

consisted of 64 hidden neurons for the output layer 

of the LSTM model. The output layer of the SRNN 

model also employed the Sigmoid function and 

contained 64 hidden neurons. The damper effects of 

the various models were measured by keeping the 

same hyperparameters across the models, which 

enabled a streamlined evaluation of their 

effectiveness in the task.  

Performance Evaluation 

The models were evaluated based on the true 

positive (TP), false positive (FP), true negative (TN) 

and false negative (FN) values generated from the 

confusion matrix. The performance metrics, 

including accuracy, precision, recall, f1-Score and 

Receiver Operating Characteristic - Area Under the 

Curve (ROC-AUC), were calculated from the 

values derived from the confusion matrix. 
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1. Accuracy  

Accuracy determines how effective the model is by 

checking the amount of the instances which was 

accurately predicted against the total number of 

classifications. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁)
       (8) 

2. Precision 

Precision checks the positive instances amongst the 

predicted positive instances in the model. The true 

positive is divided from the true positive and false 

negative. Whenever the precision score is high then 

the false positive rate reduces. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃+𝐹𝑁
    (9) 

3. Recall 

Recall is also referred to as specificity or accepted 

positive rate. It evaluates how well the model can 

check the performance of the genuine instances 

amongst all the genuine instances in the dataset. 

Whenever the model has more of positive instances 

then there is an assurance that there is a minute rate 

of negative instances. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃+𝐹𝑃
               (10) 

4. F1-Score  

To determine the f1 score of a model, the precision 

multiplied by the recall which is also multiplied by 

2 is divided by adding the precision and recall 

scores. In mathematical terms, it is expressed as: 

  𝐹1 =  
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
   (11) 

5. Area Under the Curve-Receiver Operating 

Characteristic Curve (AUC-ROC) 

AUC-ROC measures the area under the ROC curve 

which depicts a tradeoff between sensitivity (or 

recall) and specificity at different classification 

thresholds. The ROC curve shows how many true 

positive predictions are made across various 

threshold points versus how many false alarms were 

raised.  

 AUC = ∫ 𝑇𝑃𝑅(𝑡)𝑑(𝐹𝑃𝑅(𝑡))
1

0
    (12) 

RESULTS AND DISCUSSION   

This section presents the results and discusses the 

DL techniques for detecting DR, the feature 

contribution analysis for the EM, and the 

performance comparison of the proposed model 

with existing models in the literature.  

The Classification of the Ensemble Model 

The confusion matrices for CNN, LSTM, SRNN, 

and XGBoost, as shown in Figures 2a–d, were used 

to derive the performance metrics summarised in 

Table 1.  

Table 1: Comparative Evaluation of Performance of the Ensemble Model 

Model Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1-Score 

(%) 

AUC (%) 

CNN 94.17 96.31 92.88 94.56 96.85 

LSTM 92.81 95.73 90.69 93.14 96.43 

SRNN 92.53 92.80 91.67 92.23 96.25 

XGBOOST 95.63 97.79 93.64 98.79 97.75 
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                                        (a)                                                                            (b) 

          

                                        (c)                                                                            (d) 

Figure 2: Confusion Matrix of (a) CNN (b) LSTM (c) SRNN (d) XGBoost 

 

The results in Table 1 highlight the performance of 

the models on the APTOS 2019 Eye Pack Dataset 

and their effectiveness in classifying DR severity. 

Among the models, XGBoost achieves the best 

results across all metrics, with the highest accuracy 

(95.63%), precision (97.79%), recall (93.64%), F1-

score (98.79%), and AUC (97.75%). These metrics 

demonstrate XGBoost's exceptional ability to 

classify cases accurately while minimising false 

positives and false negatives, making it the most 

reliable and robust model for this task. 

The CNN also performs well, achieving an accuracy 

of 94.17%, precision of 96.31%, recall of 92.88%, 

F1-score of 94.56%, and AUC of 96.85%. Its high 

precision and recall reflect its strength in capturing 

spatial features, such as lesions and abnormalities in 

retinal images, which are critical for identifying 

diabetic retinopathy. Although slightly 

outperformed by XGBoost, CNN remains a strong 

candidate for image-based classification tasks. 

The LSTM model achieves an accuracy of 92.81%, 

precision of 95.73%, recall of 90.69%, F1-score of 

93.14%, and AUC of 96.43%. While its 

performance is solid, its lower recall compared to 

CNN and XGBoost indicates that it may miss more 

positive cases. This could be attributed to LSTM 

being better suited for sequential data rather than 

spatial image features, which are critical in this 

dataset. Finally, the SRNN has the lowest 

performance among the models, with an accuracy of 

92.53%, precision of 92.80%, recall of 91.67%, F1-

score of 92.23%, and AUC of 96.25%. Although it 

performs well, its slightly lower metrics suggest that 

it is less effective in distinguishing the severity of 

DR than the other models. 
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While all models perform strongly, XGBoost is the 

most effective, followed closely by CNN. Both 

models are excellent for automating DR detection 

and classification using the APTOS 2019 dataset. 

SHAP Analysis of the Model 

After training and testing the model, SHAP analysis 

was conducted to identify the image regions most 

influential in predicting outcomes, as shown in 

Figure 3. Additionally, SHAP analysis highlighted 

the individual model features that contribute 

significantly to the predictive power of the EM, as 

depicted in Figure 6. This analysis reveals the areas 

within images that strongly impact the model's 

decisions and clarifies which specific features from 

each model enhance the ensemble's performance, 

enhancing interpretability and aiding in refining the 

model for more accurate DR detection.  

       

Figure 3: Application of SHAP on the Model to Show the Top Regions Affecting the Model Prediction 

 

  Figure 4: Application of SHAP on the XGBoost Ensemble Model to Interpret the Effect of the Individual 

The SHAP analysis results in Figure 4 illustrate the 

contribution of each feature in the ensemble model 

to the final predictions. The results indicate that 

Feature 2, extracted from the CNN model, has the 

most significant impact on the XGBoost ensemble 

predictions, underscoring the importance of 
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capturing spatial features through CNNs to enhance 

performance accuracy. Feature 1, derived from the 

LSTM model, ranks next in importance, though its 

impact still needs to reach the level of the CNN. 

Finally, Feature 0, contributed by the SRNN model, 

has the least influence on the ensemble predictions. 

Although the SRNN model provides informative 

outputs, its overall contribution is minimal 

compared to the other models. SHAP analysis thus 

verifies the value of each model iteration within the 

ensemble, demonstrating that combining models 

enhances accuracy, prediction consistency, and 

reliability.  

Performance Comparison of the Proposed 

Techniques with the Existing Techniques  

The comparative analysis between the proposed 

model and three existing systems is presented in 

Table 2.  

Table 2: Performance Comparison of the Proposed Techniques with the Existing Techniques 

Author Ensemble Model 

Employed 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

AUC 

(%) 

Qummar et al., 

(2019) 

Inceptionv3, Xception, 

Dense121, Dense169 

 

  80.80 

 

- 

 

51.5

0 

 

- 

 

- 

 

Sikder et al., 

(2021) 

VGG16, VGG19, 

EfficientNetB5, 

EfficientNetB7, and 

EfficientNetV2S 

94.20 - - 93.51 - 

Bodapati and 

Balaji (2024) 

CNNs, Bidirectional Gated 

Recurrent Units (Bi-

GRUs), Deep Memory 

Networks (DMNs) 

86.22 - - - 96.47 

Proposed Model CNN, SRNN, LSTM 95.63 97.79 93.64 98.79 97.75 

 

The comparison was based on the methods 

employed by the authors and their reported 

performance metrics, with all authors using the 

same dataset, APTOS Eye Packs and Stacking 

Ensemble model. The results, presented in Table 2, 

show that the proposed model outperformed the 

systems developed by Qummar et al. (2019), Sikder 

et al. (2021), and Bodapati and Balaji (2024). These 

results demonstrate the effectiveness of the 

proposed approach in achieving the desired 

outcomes, particularly by leveraging the 

classification strengths of XGBoost in combination 

with architectures such as CNN, LSTM, and SRNN. 

The EM integrates the strengths of each component, 

significantly reducing the overall classification error 

and effectively handling diverse data patterns to 

enhance DR prediction. By combining multiple 

learners, the model produces more accurate and 

generalisable outputs, highlighting the advantage of 

ensemble techniques over individual classifiers. 

These findings reinforce the potential of deep 

learning-oriented ensemble frameworks for medical 

image classification, underscoring the need for 
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multi-model approaches to improve accuracy in this 

domain. 

CONCLUSION 

This study highlights the substantial progress in DR 

detection achieved through the use of diverse DL 

models. The analysis of CNN, LSTM networks, 

SRNN, and XGBoost has confirmed their 

effectiveness in diagnosing and classifying DR. 

XGBoost, in particular, stood out as the most 

effective model, emphasizing the advantages of 

ensemble learning techniques in medical image 

analysis. Additionally, SHAP analysis was 

instrumental in understanding the models' decision-

making processes. By examining how different 

regions of the images influence predictions, SHAP 

revealed which features are most critical for 

diagnosing DR. This interpretability is essential for 

building trust in ML models, especially in 

healthcare, where clear explanations of model 

decisions can aid in clinical decision-making and 

enhance patient care. The adoption of these 

sophisticated techniques not only improves 

diagnostic accuracy but also supports more 

personalised and efficient screening practices. 

Understanding and interpreting key features 

associated with DR progression enables targeted 

interventions and more effective management 

strategies. The findings from this research advocate 

for ongoing innovation and the application of 

ensemble learning and XAI technologies to advance 

automated diagnostic systems in healthcare. 
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