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 This research work investigated the effect of statistical feature extraction on the 

generation of synthetic palm vein images. The study employed three statistical 

features: mean, covariance, and correlation coefficient. The features were used 

to generate synthetic images which were evaluated using metrics such as Equal 

Error Rate (EER), Recognition Accuracy (RA), and Recognition Time (RT). The 

study justifies the use of statistical features in the generation of synthetic palm 

vein images. 
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INTRODUCTION 

Palm vein image synthesis is defined as artificially 

generated which shares common attributes with 

the original as measured by an existing biometric 

system. These attributes are always controlled by 

the initial parameters' sets to imitate the 

characteristics. Introducing a certain amount of 

variation in setting these attributes allows for the 

creation of a large number of unique palm vein 

images (Atanda et al., 2023; Olayiwola et al., 

2023). With the ability to generate large numbers 

of realistic synthetic images, the time-consuming 

and expensive process of collecting data from live 

subjects can be reduced. Synthetic biometrics also 

allow for the protection of personal identity. A 

synthetic biometric sample in an evaluation 

database is not associated with any real person's 

identity. Thus, synthetic biometric databases could 

be distributed among research organizations with 

less regulation (Yanushkevich, 2006). 

RELATED WORKS 

Michal et al. (2019) observed that images 

captured of football players during a football 

match had low resolution even when cameras 

were of high resolution. They proposed an 

approach to resolve issues posed by low-

resolution images. A simple Python script for 

synthetic images was created instead of manual 

annotations. The raw synthetic images were 

transformed into more realistic images using the 

Vanilla Cycle Generative Adversarial Network 

(CGAN) and trained using the Cascade Pyramid 

Network (CPN) model. They were able to achieve 

similar precision with their images as one of the 

CPN models trained with a Common Object in 

Context (COCO). 
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GAN was proposed for medical image synthesis. 

The method synthesizes brain images for Normal 

Control (NC), Mild Cognitive Impairment (MCI), 

and Alzheimer's disease (AD). The result showed 

that medical image synthesis using GAN is a cost-

saving approach for automated diagnostic 

technology (Islam and Zhang, 2020).  

Xuel et al. 2021 developed a model for 

synthesizing realistic histopathology images using 

HistoGAN. A synthetic framework that 

selectively adds new patches was also 

investigated. The developed models were 

evaluated on cervical histopathology and lymph 

node histopathology datasets. The results revealed 

that images generated with the developed model 

selective augmentation showed significant and 

consistent improvements.  Somasekar and 

Naveen, 2021 developed a synthetic image 

identification system GAN as a synthetic 

generator based on random sampling and Long 

Short-term Memory (LSTM) as a discriminator. 

Facial datasets and abstract art datasets were used 

for training and testing. Accuracies were found to 

be 58.53% and 72.68% for both GAN and LSTM 

respectively. 

Wang et al. 2023 examine the suitability of 

synthetic palm vein images for augmenting scare 

palm vein images. The research focused on the 

state-of-the-art method of modeling synthetic 

palm vein images and also formalized a general 

flowchart for the creation of the synthetic 

database. 

Kim et al. 2024 developed a new generative 

adversarial network to create realistic fake finger 

veins for training spoof detectors. The developed 

adversarial was used to distinguish fake finger 

veins from real images. The fractal dimension was 

introduced to analyze its complexity and to also 

generate realistic fake images. The research 

showed the effectiveness of the developed 

adversarial. 

MATERIALS AND METHODS 

Synthetic Generation Model 

This is the process of using the most significant 

information of the preprocessed palm vein images 

for classification purposes. Feature extraction is a 

crucial step in a biometric system and its 

capability directly influences the performance of 

the system. The mean, covariance, and correlation 

coefficient of the normalized palm vein images 

were extracted using the Algorithm presented: 

1. Let X be an acquired palm vein with n records 

and m variables. Let X  be the synthetic palm 

vein to be generated, with n  records and m 

variables.   

2. X can be viewed as an n × m matrix and X  can 

be viewed as an n ×m matrix.  

3. This algorithm presented guarantees that 

statistical properties of X, such as mean, 

covariance, and correlation coefficient are 

exactly reproduced in the resulting X .  

4. In this work, palm vein patterns were 

generated by introducing a certain number of 

variations to the three distinct statistical 

features of palm vein (Mean, Covariance, and 

Correlation coefficient).  

________________________________________ 

Algorithm 1: (Basic Procedure) 

_______________________________________ 

1. Generate A, which is a random n
'
 x m matrix, 

such that the covariance matrix of A is the 

identity matrix. 

2. Compute the covariance matrix C of the 

original data matrix X. 

3. Use the Cholesky decomposition on C to 

obtain  C = U
t
 x U 

         where U is an upper triangular matrix and U
t
  

         is the transposed version of U. 

4. Obtain the synthetic data set X' as a matrix 

product: X'= A.U 
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        Note That the covariance matrix of X' equals  

        the covariance matrix of X.  

5. Due to the construction of matrix A, the 

mean of each variable in X' is 0. To preserve 

the mean of variables in X, a last adjustment 

is performed. If    ̅̇  be the mean of the j-th 

variable in X, then   ̅̇ is added to the j-th 

column (variable) of X': 

   
      

     ̅                     

                                                                 (1) 

________________________________________  

________________________________________  

Algorithm 2:  (Construction of Matrix A)         . 

Procedures to specify how to construct a random 

  x   matrix A, whose covariance matrix is 

the  x m identity matrix. 

1. Generate A as an n' x m matrix with random 

elements       View the m columns of A as 

samples of variables A1,..., Am. If Cov (Aj, 

   ) is the covariance between variables Aj 

and    ), the algorithm is that  COV (Aj, 

   )   {
            

           
 

        For        {     }  

2. Let   ̅  be the mean of A1. Let us adjust A1 as 

follows:   ,1: =    1 –  ̅  i = 1…    

        The mean of the adjusted   is 0. 

3. To reach the desired identity covariance 

matrix, some values of variables A2… Am 

must change. For v = 2 to m do: 

(a) Let av be the mean of variable Av.  

(b) For j = 1 to v – 1, the covariance between 

variables Aj and Av is  

           COV (Aj,    ) = 
    
  

            

        ̅  

              
    
  

            

    

(c) To obtain COV(Aj,  )=0, j = 1 ...   − 1, 

some elements     in the  -th column of 

A are assigned a new value. Let   ,..., 

     be the unknowns for the following 

linear system of     equations: 

    
                        

                     

  
    

             

∑              

      

   

∑               

   

   

   

            

Once the aforementioned linear system is solved, 

the new values are assigned: 

                               

Let be the mean of variable Av. A final adjustment 

on Av is performed to make its mean 0:  

 ̅           ̅              

4. In the last step, values in A are adjusted to reach 

COV(Aj,                    If    is the 

standard deviation of variable Aj, the adjustment is 

computed as:  

       
    

  
              

________________________________________ 

 

Synthetic Palm Vein Image Generation 

Variations were introduced to the three optimized 

statistical features to synthesize palm vein images 

as follows: 

a. Mean 

b. Mean and Covariance 

c. Mean, Covariance, and Correlation 

Coefficient 

Identification Performance of the Developed 

System 

The synthesized palm vein images were classified 

using SOM. This technique was employed to 

measure the similarity between the test images 

and reference images in the database.  Mean was 

used for synthetic palm vein image generation, 

mean and covariance were used for synthetic palm 

vein image generation, and finally mean, 

covariance, and Correlation Coefficient were used 
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for synthetic palm vein image generation. 

Experiments were conducted to demonstrate the 

effects of the developed methods (Adetunji et al., 

2015; Oguntoye et al., 2023). In the first 

experiment, identification performances of each of 

Mean, Mean and Covariance, Mean, Covariance, 

and Correlation Coefficient were conducted. This 

was to determine the effectiveness of statistical 

features in Synthetic palm vein image generation. 

 

Table 1 Parameters of Mean at Different 

Threshold Values 

Class

ifier 

Thres

hold 

False 

Accept

ance 

Rate 

(FAR) 

False 

Rejec

tion 

Rate 

(FRR

) 

Recogn

ition 

Accura

cy (%)/ 

RA 

Averag

e 

Recogn

ition 

Time 

(s)/AR

T 

Mea

n 

 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

 

0.59 

0.59 

0.59 

0.59 

0.59 

0.43 

0.43 

0.27 

0.27 

0.13 

0.13 

0.13 

0.13 

0.13 

0.18 

0.18 

0.18 

0.18 

99.65 

99.65 

99.65 

99.65 

99.65 

99.70 

99.70 

99.75 

99.75 

 

86.92 

84.22 

84.35 

85.46 

85.50 

87.41 

84.11 

83.60 

86.27 

 

Table 2 Parameters of Mean and Covariance at 

Different Threshold Values 

Classif

ier 

Thres

hold 

False 

Accep

tance 

Rate 

(FAR) 

False 

Rejec

tion 

Rate 
(FRR) 

Recog

nition 

Accur

acy 

(%)/ 

RA 

Avera

ge 

Recog

nition 

Time 

(s)/AR

T 

Mean 

and 

Covar

iance 

 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.54 

0.54 

0.54 

0.54 

0.54 

0.38 

0.38 

0.09 

0.09 

0.09 

0.09 

0.09 

0.13 

0.13 

99.70 

99.70 

99.70 

99.70 

99.70 

99.75 

99.75 

72.52 

72.71 

73.07 

73.34 

72.56 

74.36 

73.52 

0.45 

0.50 

 

0.21 

0.21 

 

0.13 

0.13 

 

99.82 

99.82 

 

74.36 

73.47 

 

The developed systems synthesized palm vein 

images by generating a database of 10,000 palm-

vein images for each of Mean, Mean and 

Covariance, Mean, Covariance, and Correlation 

Coefficient from 500 palm-vein images (original 

images). 

Table 3 Parameters of Mean, Covariance, and 

Correlation Coefficient at different Threshold 

Values 

Classif

ier 

Thres

hold 

False 

Accep

tance 

Rate 

(FAR) 

False 

Rejec

tion 

Rate 
(FRR

) 

Recog

nition 

Accur

acy 

(%)/ 

RA 

Avera

ge 

Recog

nition 

Time 

(s)/AR

T 

Mean, 

Covari

ance, 

and 

Correl

ation 

Coeffi

cient 

 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.48 

0.48 

0.48 

0.48 

0.48 

0.32 

0.32 

0.16 

0.16 

0.04 

0.04 

0.04 

0.04 

0.04 

0.09 

0.09 

0.09 

0.09 

99.75 

99.75 

99.75 

99.75 

99.75 

99.80 

99.80 

99.88 

99.88 

82.53 

82.21 

82.54 

83.46 

83.70 

82.59 

82.60 

83.16 

83.61 
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Figure1: Block Diagram of the Synthetic Palm 

Vein Image Generation System 

For identification, with regards to each Mean, 

Mean and Covariance, Mean, Covariance, and 

Correlation Coefficient 6,000 synthetically 

generated palm vein images were used for training 

data sets and 4,000 synthetically generated palm 

vein images were used for test data sets.  

RESULTS AND DISCUSSION 

Results 

As depicted in Tables 1 and 3, FAR for S1, a 

minimum value of 0.27 was recorded between 

thresholds of 0.45 between 0.50 while the 

maximum value of 0.59 was observed between 

threshold values of 0.10 and 0.30. S2 recorded a 

minimum FAR of 0.21 between the thresholds of 

0.45 and 0.5 while the highest was 0.54 at the 

thresholds of 0.10 and 0.30. S3 had the lowest 

value of 0.16 between the thresholds of 0.45 and 

0.5 while the highest value was 0.48 at thresholds 

of between 0.1 and 0.30. In addition, NS recorded 

a minimum FAR of 3.26 between the thresholds 

of 0.45 and 0.5 while the highest is 9.78 at the 

thresholds of 0.10 and 0.30. 

FRR for Mean, a minimum FRR value of 0.13 

was recorded between the threshold of 0.10 and 

0.30 and a maximum value of 0.18 was obtained 

at thresholds between 0.35 and 0.50. Mean and 

Covariance has the least value of 0.09 at the 

thresholds of between 0.10 and 0.30 while the 

highest value is 0.13 at thresholds of between 0.35 

and 0.50. Also, FRR for Mean, Covariance, and 

Correlation Coefficient has the lowest value of 

0.04 between the threshold of 0.10 and 0.30 while 

the highest value of 0.09 was gotten at thresholds 

of between 0.35 and 0.50 as indicated in Tables 1 

to 3 respectively. 

 RA of the systems vary between 99.65% and 

99.75% for Mean, 99.70% and 99.82% for Mean 

and Covariance, and 99.75% and 99.88% for 

Mean, Covariance and Correlation Coefficient as 

shown in Tables 1 to 3. RT of the systems was 

84.22s and 86.92s for Mean, 72.52s and 74.36s for 

Mean and Covariance, 82.21s and 83.70s for 

Mean, Covariance and Correlation Coefficient  

Discussion  

FAR measures the levels at which imposters are 

erroneously accepted by a system. From Tables 1 

to 3, Mean, Mean and Covariance, Mean, 

Covariance, and Correlation Coefficient had the 

lowest value of FAR (0.16); this implied that a 

minimal number of such imposters were 

accommodated when compared with those of 

Mean and Covariance, and Mean. In like manner, 

FRR measures the levels at which legitimate 

enrollees were wrongly rejected. Its analysis 

revealed that the Mean, Covariance, and 

Correlation Coefficient had the lowest FRR of 

0.04. This implies that a minimum number of 

legitimate enrollees were wrongly rejected 

compared to the Mean and Covariance Mean. The 

results indicated that the system, Mean, 

Covariance, and Correlation Coefficient have the 
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highest level of deterrent to other systems (Mean 

and Covariance and Mean) considered.  Mean, 

Mean and Covariance, Mean, Mean, Covariance, 

and Correlation Coefficient is the only system 

with the highest level of sensitivity to all the 

training images. 

Evaluation of FAR, FRR, and thresholds were 

carried out. Creating the best access control 

system became an issue because it was difficult to 

decide if a system with higher FRR values was 

better than those with higher FAR; both metrics 

are threshold dependent. EER is a point of 

intersection of both FAR and FRR. The EER of a 

system is threshold threshold-independent 

performance measure of the access control system 

with its value independent of varying thresholds. 

EER of the systems under consideration were 

0.22, 0.51, 0.58, and 4.36 for Mean, Mean and 

Covariance, Mean, Covariance and Correlation 

Coefficient, Mean and Covariance and Mean 

respectively. Mean, Mean and Covariance, Mean, 

Mean, Covariance and Correlation Coefficient 

have the lowest EER value because in all the 

systems under consideration, it exercised the 

highest restraint to palm vein images that did not 

take part in the training (least FAR) and least 

restraint to images of the subject that took part in 

the training phase (FRR). Given this, it is the most 

secure and has the best access control 

performance among the four systems because it is 

built with sufficient optimized statistical features 

as depicted in Figures 1 to 3.   

 

Figure 1 EER of Mean 

Tables 1 to 3 showed the ARA of the four systems 

with 99.68% for Mean; 99.73% for Mean, Mean, 

and Covariance; and 99.80% for Mean, Mean, and 

Covariance, Mean, Mean, and Covariance; S3 had 

the highest ARA (99.80%) of the four systems and 

this is on the ground that the more the optimized 

statistical features that were included in the 

training and testing, the better the recognition 

accuracy. This is an indication that optimized 

statistical features in the developed systems 

contributed significantly to the overall 

performance of access control systems and/or 

identification systems.  

The ART obtained for the systems is 84.97s, 

75.55, 84.04s, and 681.74s for Mean, Mean, and 

Covariance, Mean, Mean, Covariance, and 

Correlation Coefficient and NS respectively, with 

Mean and Covariance (75.55s) having a 

significantly least value. This implied that the 

average rate of certifying the identity of an 

individual is the lowest with Mean and 

Covariance. 
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Figure 2 EER of Mean and Covariance 

 

Figure 3 EER of Mean, Covariance, and 

Correlation Coefficient 

CONCLUSION 

Conclusively, the work has presented a method to 

create a synthetic palm vein database, which is a 

reasonable facsimile of a real palm vein, which can 

be used to address several fundamental, conceptual 

issues in the field of biometrics. The developed 

systems have established that the synthetic palm 

vein has promising potential in real applications. 

Additionally, this work has revealed how a palm 

vein can be accurately transformed across two or 

more diverse synthetic environments is an 

important and achievable next step for the 

advancement of biometrics. 
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