
Adeosun O.O. et. al /LAUTECH Journal of Engineering and Technology 7(1) 2011:52-56

 52

TRIPLE MODULAR REDUNDANCY APPROACH FOR INTERNET

CONNECTIVITY

1
O.O. Adeosun,

2
E.R. Adagunodo and

2
E.A. Olajubu

1
Department of Computer Science and Engineering,

Ladoke Akintola University of Technology, Ogbomoso, Nigeria

2
Department of Computer Science and Engineering,

Obafemi Awolowo University, Ile-Ife, Nigeria

ABSTRACT

This paper discusses the issue of providing tolerance to hardware and software faults in Internet system through

triplicate application servers. A replication scheme (TMR) is presented, and a detailed dependability analysis of

this scheme is performed. The proposed model was designed mainly for fault-tolerant Internet connectivity

system where faults will not impair the continuous services rendered by the Internet system, thereby exhibiting

highly varying and dynamic system characteristics. A major feature of the model under consideration is to

attempt the adaptive connections of the existing Triple Modular Redundancy (TMR) scheme for the execution of

redundant modules for a required level of fault tolerance.

Keywords: Modularization, application servers, replication scheme, dependability analysis, reliability, parallel

processing, real-time processing, stochastic modeling,

1. Introduction

 Internet system is developed to satisfy a set

of requirements that meet a need. It should be able to

deploy and coordinate network resources in order to

plan, operate, administer, analyze, evaluate, design,

and expand communication networks to meet

demand at all times, and at a reasonable cost and

optimum capacity. Better control assures a high level

of quality of service, which corresponds to high

productivity that is a function of investment turn-

around. A requirement that is important in Internet

system is that it should be highly dependable. Fault

tolerance is a means of achieving that dependability.

Fault-tolerant computing is the art and science of

building computing systems that continue to operate

favourably to satisfy users even in the presence of

faults. Fault-tolerance is achieved by applying a set

of analysis and design techniques to create systems

with dramatically improved availability leading to

very high dependability. Fault tolerance systems

research covers a wide spectrum of applications

ranging across embedded real-time systems,

commercial transaction systems, transportation

systems, military/space systems, health management

systems, communications systems and so on. The

supporting research includes system architecture,

design techniques, coding theory, testing, validation,

proof of correctness, modeling, software reliability,

operating systems, parallel processing, and real-time

processing. These areas involve diverse expertise

knowledge ranging from formal logic, stochastic

modeling mathematics, graph theory, hardware

design and software engineering.

 Replication is one of the oldest and most

important in distributed systems. Whether one

replicates data, computation or component, the

objective is to have some group of

processes/components that handle incoming events.

 Triple Modular Redundancy (TMR) is

generally used to increase the reliability of real time

systems where three similar modules are used in

parallel and the final output is arrived at using voting

methods. The adoption of TMR for Internet

connectivity usually requires the combined utilization

of a wide range of techniques, including fault

tolerance techniques intended to cope with the effects

of faults and avert the occurrence of failures or at

least to warn a user that errors have been introduced

LAUTECH Journal of Engineering and Technology 7(1) 2011: 52-56

Adeosun O.O. et. al /LAUTECH Journal of Engineering and Technology 7(1) 2011:52-56

 53

into the state of the system. To implement failover, it

requires replicating service on TMR, storing

distributed checkpoint and synchronizing replicas.

2. Review of Related works

 Some of existing software fault tolerance

approaches was extended to the treatment of both

hardware and software faults (hybrid faults). Two

typical schemes are taken into account – recovery

blocks (Randell, 1975) and Self-Configuring

Optimistic Programming (SCOP), an adaptive

scheme (Bondavalli et al., 1993). N-version

programming (Avizienis and Chen, 1977) is a

representative of non-adaptive schemes for the sake

of comparison. These architectural solutions

specially directed to Internet system was analyzed

with respect to dependability, availability,

accessibility and restartability.

 Laprie et al (1987) presented a set of hybrid-

fault-tolerant architectures and analyzed and

evaluated three of them. Their architectures are

based on a fixed set of hardware components and not

related to the dynamicity of hardware resources

available as well as the efficiency issues. Such

architectural solutions cannot well match the

characteristics of dependable Internet system craved

for in this research in which the resources must be

competed by many unrelated but concurrent service

requests on the Internet. In such varying

environments e.g., Internet the architectures with the

fixed requirement to hardware components are either

inefficient or infeasible.

2.1 Client-Server distributed computing

systems

Modern client-server distributed computing

systems may be seen as implementations of N-tier

architecture. In a typical four tier architecture the

first tier (client tier) consists of client applications

containing browsers, with the remaining three tiers

deployed within an enterprise representing the server

side; the second tier (Web tier) consists of a Web

server that receives client requests typically via

HTTP and passes on the requests to specific

applications residing in the third tier (business tier)

that is capable of hosting distributed applications; the

fourth tier (enterprise information systems tier)

contains databases and legacy applications of the

enterprise. The platform providing the Web tier plus

business tier is usually called an application server.

Scalability can be achieved by replication of the

different tiers on a cluster of machines (also called

clusterization).

2.2 Redundancy system basics

The generic engineering solution to the

problem of flaky components is redundancy: using

multiple unreliable components in a coordinated,

mutually verifying way can increase the reliability of

the complete system by orders of magnitude. For

example, if two identical, redundant components are

each down 0.1% of the time, their failure modes are

completely independent and detectable, and the rest

of the system (including the arbitrator which

determines which component to trust) can be

approximated as 100% perfect, then the whole

system should be down only 0.0001% of the time.

As the example demonstrates, it is never possible to

reach 100% reliability, but it is often possible to

come arbitrarily close to the limit. This is the focus

in this research work, to provide Internet services to

clients without any interruption even at the presence

of faults, thereby making the Internet system

transparent and very well available to the clients.

3. Proposed Methodology for building Fault-

Tolerant Internet Connectivity

 Guerraoui and Schiper (1996) opine that

group communication enables encapsulating a set of

entities that cooperate to achieve some common

service. A group has a logical address, which allows

clients ignore the existence of its members. In figure

1, a set of replicated application servers composes the

group. All replicas must provide access to the same

methods and have to maintain the same state. To

achieve this, there should be strong consistency. This

will enable read-one-write-all replicas.

Adeosun O.O. et. al /LAUTECH Journal of Engineering and Technology 7(1) 2011:52-56

 54

Figure 1: Proposed Replicated Servers Model

3.1 From primary to backup replication

 In figure 1, one of the replicated servers (the

primary) executes a transaction locally. Many classical

approaches to replication are based on a primary/backup

model where one device or process has unilateral control

over one or more other processes or devices. For

example, the primary might perform some computation,

streaming a log of updates to a backup (standby) process,

which can then take over if the primary fails, that is, it

forwards updates to all other group member (backups)

using the total order multicast primitive (TOCAST)

(Guerraoui and Schiper, 1996). This primitive ensures

that updates are delivered in the same order by all correct

processes that work according to their specification. The

termination property of the TOCAST assures the

distributed system progress despite of failures, as well as

its non-blocking characteristics. Typically, the primary

waits for all backup answers and returns response to the

client.

 In order to avoid bottleneck, any replica can be

enabled to play the primary role. Backup failure is

transparent to the requester, but faulty primaries require

achieving failover. In this study, a client detects a faulty-

primary using timeout and its stub automatically re-routes

a faulty request to an alternative application server.

 The weakness of primary/backup schemes is that

in settings where all modules could have been active, only

one is actually performing operations. It is true we are

gaining fault-tolerance but spending thrice money as

much to get this property. An outgrowth of this work was

the emergence of schemes in which a group of replicated

modular components could cooperate, with each

component backup the others, and each having the same

status with the others.

3.2 Communication model

 We use an asynchronous communication in our

model; even overload application server can be assumed

as fault-suspected because there is no way to distinguish

between overload and faulty application servers. Also,

we use an underneath group-communication layer to

provide the needed multicast primitive and also

application server service. The application server service

manages the replicated application servers in figure 1 and

detects fault-suspected application servers removing them

from the group. The group communication layer operates

in the presence of message omission faults, processor

crashes and recoveries as well network partitions and

merges.

4. Design Approach

 As the number of nodes in a distributed

computation increases, so does the probability for failure.

A system is a collection of functionalities that must

perform specific tasks; then the design of a survivable

system can be thought of as a multistage process. It

should be noted that, in a malicious environment, each

stage has its limitations.

 In traditional fault-tolerance, tolerating faults is

typically achieved utilizing the principle of redundancy.

Adeosun O.O. et. al /LAUTECH Journal of Engineering and Technology 7(1) 2011:52-56

 55

(i) Information Redundancy – usually considers the

inclusion of additional information as the basis

for fault recovery. A typical example is an error

correction code.

(ii) Time redundancy – relies on multiple executions

skewed in time on the same node and is often

used to mask omissions.

(iii) Spatial redundancy – uses multiple components,

each computing a value, and the final value is

derived from a convergence function (e.g.,

majority voting). The resulting N-modular

redundant (NMR) system implements a k-of-N

system, which implies that the system functions

as long as k or more components are fault free.

A typical configuration is a triple-redundant

redundancy (TMR), which is a 2-of-3 system.

5. Enabling Recovery Failures and Providing

Failover Service to Users

 Achieving the proposed Internet fault-tolerant

service using modular redundancy requires treating client-

primary as well primary-backups interaction. The model

handles client-primary interaction switching of the client

requests to alternative application server, when the current

service is interrupted. The work also handles primary-

backup interaction implementing distributed checkpoints.

Recover from a failed application server is easier. It just

requires re-routing clients‟ requests.

5.1 Distributed checkpoint implementation

 A distributed checkpoint contains all local

snapshots placed in all the replicated application servers.

Each snapshot holds information about the last executed

method, the client who requested this method and the

application server who executed this method. This

follows a distributed checkpoint approach, which

multicasts a snapshot from a primary to all other

application servers. Whenever the primary receives a

transactional request (using point-to-point

communication) from a client, it updates its own state and

multicasts synchronization messages to the backups using

the TOCAST primitive. The primary verifies if the

distributed checkpoint was successfully established

(waiting for all backup confirmation messages) and

answers the client.

 Backups process the synchronization messages

and automatically store updates in their own states to

establish the distributed checkpoint and to reflect a single

distributed global state. If an application server fails,

clients are guaranteed access to the same data through the

backups. When an application server connection is

closed, all application servers remove the information

about the distributed checkpoint for that client. Storing

this information will enable automatic failover during a

transaction execution. The non-finished methods will be

executed in another application server used to replace the

failed application server.

5.2 Propagating updates to backups

 There are two possible strategies to propagate

updates: deferred update and immediate update

(Wiesmann et al., 2000). In deferred update, transactions

are processed locally at one application server and are

forward to the backups at the commit time while the

immediate update synchronizes every transaction across

all application servers.

6. Implementation Issues

 Two OpenSource projects were identified: Java-

Groups (Ban, 1999) and JOnAS (Java Open Application

Server) (Danes et al., 2000). Our replicated server is been

developed to match the two OpenSource. In our model

(figure 1), we changed some classes of the JOnAS to

include the TOCAST primitive in the application server-

side. Replicated application servers join the group and

use this primitive to setting the distributed checkpoint.

We implement the distributed checkpoint selecting, at

compiling time, updates to be forwarded during the

service execution. An update is assumed to be a method

without result (it returns a null value). In the client-side,

we modify the client‟s stub to automatically re-route

faulty requests.

7. Result and Discussion

According to McCarthy (2003), a TMR

architecture will have its reliability to be:

RSystem
= R[

3
+ R3

2

RR
v

)]1( ...……........ (1)

 where

R is the reliability of individual application server

working correctly

(1-R) is the reliability that an application server is not

working

Rv is the reliability of the coordinating voting device

Adeosun O.O. et. al /LAUTECH Journal of Engineering and Technology 7(1) 2011:52-56

 56

Since our model (figure 1) follows suit, it means our

reliability model is (1).

 Proof:

If r (survival probability) is the reliability of an

individual replicated application server then, the

reliability of the k-out-of-N structure (figure 1) under the

assumption that failures are independent events is given

by the expression:

 rr
i

N
NofoutkR

iNi
N

ki

 













1)(……….. (2)

where:

  !!

!

iiN

N

i

N











 k is the number of application servers in use.

N is the total number of application servers

available for use

This reliability expression is simply the summation of all

the successful events; i.e. the system (2) survives

provided k, k+1, k+2, …, N-1, or N application servers

survive. The probability of exactly i application servers

(modules) surviving is r
i
. The probability of exactly

iN  application servers having failed is  r
iN




1 , and

the number of ways in which this event can occur is N-

combinatorial-i. The summation of all these events from i

= k to N yields the general expression (2). This general

expression (2) has a number of special cases, which

represent many of the commonly used protectively

redundant structures.

 In this case, where 3 application servers are used,

the system (figure 1) can tolerate the failure of up to









2

N

application servers. Therefore, the fault-tolerance of the

proposed system is equal to









2

3 thereby leading to high

availability of Internet system, which is improving

availability of Internet services to users.

8. Conclusion

 Transactional systems could benefit from high

availability Internet system to achieve fault tolerance and

high dependability. The Internet system is more available

for service delivery and provides good performance cum

high Internet stability.

Also, we expect that server modularization

improves the application servers‟ response time, when

compared with non-replicated application servers, by

allowing requests to be handled by several modules rather

than one besides eliminating a single point-of-failure. In

addition, deployment and redeployment of new and

recovered application servers are necessary to maintain

the Internet availability and dependability.

References

Avizienis, A. and Chen, L. (1977): “On the

Implementation of N-Version Programming for

Software Fault Tolerance During program

execution,” in COMPSAC 77, pp.149-155.

Agarwal, T.; Pathak, A. and Mohan, A. (2011): “A Novel

Hybrid Voter Using Genetic Algorithm and

Performance History,” International Journal of

Artificial Intelligence And Expert Systems

(IJAE), Volume (2), Issue (3), pp117-121.

Ban, B. (1999): JavaGroups user‟s Guide, Department of

Computer Science, Cornell University, 73p.

http://JavaGroups sourceforge.net/

Bondavalli, A.; Di Giandomenico, F. and Xu, J. (1993):

„A Cost-Effective and Flexible Scheme for

Software Fault Tolerance,‟ Journal of Computer

Systems Science and Engineering, CRL

Publishing Ltd., Vol. 8, No. 4, pp.234-244.

Danes, A.; Dechamboux, P.; Riveill, M. and Vandome, G.

(2000): “Technologie a base de composants EJB

experience et perspectives avec JOnAS. OCM

2000, Nantes, Mai 2000, pp 11-13.

http://www.objectweb.org/jonas/

Guerraoui, R. And Schiper, A. (1996): “Fault_Tolerance

by Replication in Distributed Systems.”

Department d‟Informatique Ecole Polytechnique

Federale de Lausanne, 1996.

Laprie, J.C.; Arlat, J.; Beounes, C.; Kanoun, K. and

Hourtolle, C. (1987): “Definition and Analysis of

Hardware-and-Software Fault-Tolerant

Architectures,” IEEE Computer, Vol. 23, No. 7,

pp.39-51.

McCarthy, M. (2003): “Fault-Tolerant”, Tech Target,

Volume 3, Number 1, pp13-21.

Randell, B. (1975): “System Structure for Software Fault

Tolerance,” IEEE TSE, Vol. SE-1, No. 2,

pp.220-232.

Wiesmann, M.; Pedone, F.; Schiper, A.; Kemme, B. and

Alonso, G. (2000): Understanding replication in

databases and distributed systems. Proceedings

of ICDCS 2000, pp.264-274, Taipei, Taiwan,

R.O.C., April 2000.

http://javagroups/

	TRIPLE MODULAR REDUNDANCY APPROACH FOR INTERNET CONNECTIVITY
	1O.O. Adeosun, 2E.R. Adagunodo and 2E.A. Olajubu
	Figure 1: Proposed Replicated Servers Model
	References

