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 The performance of machine learning models, particularly Convolutional 

Neural Networks (CNNs), is profoundly influenced by effective hyperparameter 

tuning. However, a comprehensive understanding of how these hyperparameters 

affect the predictive accuracy of CNN-based pathloss models has not been 

adequately carried out. This study explores the role of hyper-parameter tuning in 

a hybridised CNN architecture that integrates DenseNet121 and ResNet50 to 

enhance pathloss prediction in mobile network environments. Field 

measurements were conducted along strategically selected urban and suburban 

routes in Ilorin, Kwara State, Nigeria. The results revealed the critical influence 

of key hyperparameters, such ashidden layers, batch size, training epochs, and 

computational efficiency, on model performance. Initially, with only two (2) 

hidden layers, the model showed suboptimal predictive accuracy, characterised 

by an MAE of 25.15, a  MSE of 34.43, and a highly negative R² value of 6.01. 

However, increasing the hidden layers to seventeen(17) yielded a substantial 

improvement, with the MAE reducing to 2.08, the MSE decreasing to 7.35, and 

the R² shifting positively to 0.80. Further analysis of batch sizes revealed that 

smaller sizes resulted in poor model performance, increasing it to 8 significantly 

enhanced accuracy. Additionally, an increase in training epochs from 50 to 200 

led to a marked reduction in prediction errors, albeit at the expense of extended 

training time per iteration. These findings underscore the pivotal role of strategic 

hyperparameter selection in optimising CNN-based pathloss modelling, offering 

valuable insights for enhancing predictive performance in mobile network 

systems. 

Keywords: 

Convolutional Neural 

Networks, 

Hyperparameters, 

Mobile Network 

Systems,  

Pathloss Modelling  

 

 

 

 

 

 

 

 

 

Corresponding Author: 
zkadeyemo@lautech.edu

.ng 

INTRODUCTION 

Pathloss modelling plays a vital role in the 

development and optimisation of mobile 

communication networks (Abdulkarim et al., 

2022), as accurate pathloss prediction enables 

efficient network planning, resource allocation, and 

signal coverage estimation (Tushar and Jadon, 

2013). Traditional empirical pathloss models, while 

widely used, often struggle to adapt to the diverse 

and dynamic nature of mobile environments, 

limiting their predictive accuracy (Oyelaran et al., 

2024). Machine Learning (ML)-based pathloss 

models have appeared as promising alternatives, 

exploring the ability of ML to find complex 

relationships within input data. In particular, deep 

learning approaches such as Convolutional Neural 

Networks (CNNs) have demonstrated superior 

performance by extracting both linear and 

nonlinear features from the input data during 

machine training (Al-Hakim and Prasetiyo, 2024). 

Unlike conventional empirical models, CNNs can 

learn spatial dependencies and generalise better 

across varying network conditions. Recent studies 

have explored various ML models for pathloss 

prediction, including Support Vector Machines, 

Random Forest, Extreme Gradient Boosting, and 

Transformers (Abdollahzadeh et al., 2024). While 

these models offer advantages in different contexts, 

they lack the deep feature extraction capabilities 
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inherent in CNNs. The CNNs, with their 

hierarchical architecture, can process large input 

datasets, capturing intricate patterns that influence 

signal propagation (Benz et al., 2021). Despite the 

promising potential of CNNs, optimising their 

performance requires careful tuning of 

hyperparameters such as epoch count, batch size, 

learning rate, activation functions, and the number 

of hidden layers. Understanding how these 

hyperparameters affect the predictive accuracy of 

CNN-based models remains crucial (Arnold et al., 

2024). This study investigates the impact of hyper-

parameter tuning on a hybridised CNN architecture 

combining DenseNet and ResNet to enhance 

pathloss prediction in mobile network systems. 

However, CNNs have various architectural 

variants, each designed with improved features and 

layer structures tailored for specific applications. 

The choice of a CNN variant depends on the nature 

of the input data, research objectives, and the 

intended area of application (Christopher et al., 

2023). For instance, deep learning models, 

including CNNs, often encounter the challenge of 

vanishing gradients, which can hinder optimal 

learning and model convergence (Ahmed et al., 

2024). One of the CNN variants designed to 

address this issue is DenseNet, which introduces 

densely connected layers that enhance gradient 

flow and improve feature propagation. DenseNet’s 

architecture mitigates the vanishing gradient 

problem by establishing direct connections between 

layers, facilitating efficient learning and parameter 

optimization (Hasan et al., 2021). This design is 

particularly helpful for deep networks that require 

complex feature extraction without gradient decay. 

However, to further enhance feature reuse and 

model stability, integrating DenseNet with 

ResNet’s residual blocks, which are thoughtfully 

incorporated to complement DenseNet by 

preserving essential features and mitigating 

gradient vanishing through shortcut connections 

(Gao et al., 2022). This hybridisation improves 

predictive performance, making it well-suited for 

pathloss modelling and other deep learning tasks 

requiring robust feature extraction. Proper tuning of 

hyperparameters, such as learning rate and 

activation functions, further ensures efficient model 

convergence (Belete and Huchaiah, 2022). This 

research therefore hybridised the variants of 

DenseNet121 and ResNet50of CNNs, where the 

residual network connection in the ResNet50 layers 

allows a feature reuse capability for the hybridised 

architecture to mitigate any gradient that may 

vanish during training while sustaining the deep 

learning requirements for excellent feature 

extraction. The performance of this new hybridised 

architecture requirescareful tuning of the 

hyperparameters, including epoch count, batch size, 

learning rate, activation functions, and the number 

of hidden layers. The impact of these 

hyperparameters on the learning dynamics and 

predictive accuracy of CNN-based pathloss models 

is still an area of active research.This 

study,therefore,aims to assess the influence of 

hyperparameter tuning on the performance of a 

hybridised CNN model combining DenseNet121 

and ResNet50 for pathloss prediction by 

systematically evaluating the hyperparameter 

configurations. The study looks to provide insights 

into optimizing CNN-based pathloss models for 

improved prediction accuracy and generalization in 

diverse mobile network environments.The 

remaining section in this article isorganised as 

follows: Section 2 presents the Evolution of hyper-

parameter tuning in machine learning, while 

Section 3 presents the methodology. In section 4, 

the results and discussions were presented. Section 

5 concludes the article and then presents the 

recommendations. 

 



Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190 
 

182 

EVOLUTION OF HYPERPARAMETER 

TUNING IN MACHINE LEARNING 

The development of hyperparameter tuning 

strategies has evolved alongside advancements in 

Machine Learning (ML) architectures and 

computational techniques. Between the 1950s and 

1980s, we had the foundation of ML algorithms, 

including perceptrons (Weerts et al., 2020) and 

early decision tree models, which relied on 

manually defined hyperparameters with limited 

computational resources. However,the models were 

small, and tuning was primarily heuristic-based. 

With the resurgence of neural networks in the 

1990s, backpropagation became a critical 

development, requiring careful selection of learning 

rates and weight initialisation strategies to avoid 

vanishing gradients(Halbouni et al., 2022). 

Gradient descent-based optimisation methods like 

stochastic gradient descent (SGD) were manually 

tuned using fixed learning rates and batch 

sizes.However, the early 2000s saw the 

introduction of hyperparameter search techniques, 

moving beyond manual choice. Grid search 

emerged as a systematic approach, iterating over 

predefined hyperparameter values (Belete and 

Huchaiah, 2022). Random search followed, 

offering better efficiency by sampling from a 

hyperparameter space rather than exhaustively 

searching every combination (Arafat et al., 2024). 

In furtherance, Bayesian optimisation improved 

search efficiency by modelling the objective 

function and selecting promising hyperparameter 

values iteratively (Gao et al., 2022). During this 

period, adaptive optimisers such as AdaGrad, 

RMSprop, and Adam optimiserrevolutionised 

tuning by dynamically adjusting learning rates, 

improving convergence and generalization (Ng and 

Ghahfarokhi, 2022). Between2015 and 2020,when 

CNNs gained prominence in image recognition and 

complex pattern learning, hyperparameter tuning 

focused on depth, kernel size, activation functions, 

and dropout rates (Ennibras et al., 2024). 

ResNet50, for instance, introduced skip 

connections to mitigate vanishing gradients, 

reducing the need for excessive hyperparameter 

tuning,which further enhanced feature reuse with 

densely connected layers, DenseNet121, requiring 

adjustments in learning rate schedules and batch 

sizes. Recently, advancements have used 

automated hyperparameter tuning through Neural 

Architecture Search (NAS) and AutoML 

frameworks. Google's NASNet and EfficientNet 

demonstrated that Artificial Intelligence (AI)-

driven hyperparameter search could optimise CNN 

architectures beyond human-designed models ( 

Ahmed et al., 2024; El-Maksoud et al., 2021). 

Transformer-based models, such as Vision 

Transformers (ViTs), introduced novel tuning 

challenges, including sequence length and attention 

head optimization (Maurício et al., 2023).The trend 

towards higher-frequency neural networks, larger 

datasets, and self-optimising ML architectures 

suggests an increasing reliance on deep learning-

based hyperparameter tuning, meta-learning, and 

federated optimisation strategies (Ethier and 

Châteauvert, 2024). However, there is a significant 

research gap in understanding the specific impact 

of hyperparameter tuning on the architectural 

structure of complex CNN models, particularly 

hybridised architectures that integrate multiple 

CNN variants. Existing studies have largely 

focused on either individual CNN architectures or 

general tuning techniques without a comprehensive 

analysis of how hyperparameter adjustments 

influence hybrid models' learning efficiency, 

convergence rate, and generalisation 

performance.This study, therefore, bridges this gap 

by systematically analysing the effects of 

hyperparameter tuning on a hybridised CNN 

architecture combining DenseNet121 and 

ResNet50. The key contributions of this research 

are as follows: 
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o It examines the impact of key 

hyperparameters, including epoch size, batch 

size, learning rate, activation functions, and the 

number of hidden layers, on hybridised CNN 

models. 

o It optimises strategies for hybridised CNNs 

through the study of optimised hyperparameter 

configurations that enhance convergence 

speed, reduce overfitting, and improve pathloss 

prediction accuracy. 

o Benchmarking of the hybridised CNN-based 

pathloss model’s performance. This 

researchsets upempirical insights into the 

effectiveness of hyperparameter tuning for 

complex deep learning frameworks. 

METHODOLOGY 

The systematic approach adopted for the research 

in the hyperparameters impact analyses on a 

hybridised CNN-based pathloss prediction model 

through deep learning techniques encompasses data 

collection, preprocessing, training, testing, and 

evaluation of the developed hybridised CNN-based 

pathloss model.  

The development of the hybridised model 

The model was developed using the libraries and 

tools for ML, such as scikit-learn and TensorFlow, 

which are open-source tools on Jupiter Notebook 

on Google Colaboratory. The architectural 

structural layers of DenseNet121 and ResNet50 

variants of CNN were hybridised through layer 

compilation and compression as depicted in the 

flow chart of Figure 1. 

Data acquisition 

The following procedures were taken for the field 

measurement of the input data through a drive test. 

i. Four measurement routes of GRA – Unilorin, 

Taiwo – Airport – Otte, Post Office - ARMTI, 

and Emir Palace - KWASU routes were 

chatted to cover urban and suburban areas of 

Ilorin, where all the mobile Base Transceiver 

Station (BTS) of MTN, Glo, Airtel, and 

9Mobile are actively present.  

ii. A test drive was done to study human activities 

and vehicle movement along each route, and 

an average speed of 40km/hr. It was adopted 

for the drive test to mitigate the effect of 

Doppler on the field measurement data. 

iii. RantCell Professional version was installed on 

anInfinix Hot30 mobile phone with an 

interface as shown in Figure 2. The Global 

Positioning System for the mobile phone was 

enabled, and each mobile network's Serial 

Identification Module (SIM) was sequentially 

enabled for the drive test along each of the four 

measurement routes 

iv. Mobile signal pathloss values, altitude, 

latitude, longitude, and satellite images of the 

measurement points were measured and 

captured. 

Data Preprocessing 

The field measurement data were preprocessed 

using a Microsoft Excel sheet, where outliers in the 

field data were sorted and filtered, and the data 

were divided into training data, testing data, and 

evaluation data. The spherical law of Cosine 

model, expressed by (Van-Brummelen, 2013) in 

Equation 1, was used to determine the Radial 

Distance  𝑅𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of each measurement point 

from the reference BTS, with information in Table 

1 for each route. 

𝑅𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑘𝑚) = 𝐴𝑐𝑜𝑠 ((𝑐𝑜𝑠(∅1)𝑐𝑜𝑠(∅2) +

𝑠𝑖𝑛(∅1)𝑠𝑖𝑛(∆𝜆) ∗ 𝑐𝑜𝑠𝐸𝑅))   1 

Where ∅1 and ∅2 are the latitude and longitude of 

the reference BTS, ∆𝜆 is the change in longitude of 

each measurement point, and 𝐸𝑅 is the Earth's 

radius in km. This model delivers high-precision 

results with 15 significant figures, enabling 

accurate calculations for distances as small as 

approximately 1 meter. 
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Figure 1: The Flow Chart of the hybridised CNN-based pathloss Model’s Architectural Structure. 

 

Figure 2: The RantCell Logger Interface and Field Measurement setup. 

 

Table 1: The summary of Reference BTS for the four measurement routes 

 

Routes Altitude Latitude Longitude RSRP(dB) Net-Data/Type 

GRA-Unilorin 299 8.48513 4.56636 -74 LTE/MTN 

Post-office-Armti 340 8.45223 4.58196 -80 EDGE/MTN 

Taiwo-Otte 284 8.49952 4.56169 -50 HSPA+/MTN 

Emir-Kwasu 248 8.49379 4.56680 -75 HSPA+/MTN 

 

Routes Altitude Latitude Longitude RSRP(dB) Net- Data/Type 

GRA-Unilorin 302 8.49997 4.57865 -64 LTE/GLO 

Post-office-Armti 334 8.45302 4.58098 -61 LTE/GLO 

Taiwo-Otte 340 8.44737 4.50745 -91 LTE/GLO 

Emir-Kwasu 278 8.49361 4.56689 -73 LTE/GLO 
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Routes Altitude Latitude Longitude RSRP(dB) Net-Data/Type 

GRA-Unilorin 287 8.48887 4.56586 -69 LTE/AIRTEL 

Post-office-Armti 288 8.49901 4.57336 -75 LTE/AIRTEL 

Taiwo-Otte 294 8.43722 4.49921 -75 LTE/AIRTEL 

Emir-Kwasu 323 8.43732 4.49925 -76 LTE/AIRTEL 

 

Routes Altitude Latitude Longitude RSRP (dB) Net-Data/Type 

GRA-Unilorin 286 8.48524 4.56606 -76 LTE/9MOBILE 

Post-office-Armti 330 8.45316 4.56606 -86 LTE/9MOBILE 

Taiwo-Otte 290 8.48381 4.55826 -87 LTE/9MOBILE 

Emir-Kwasu 330 8.45316 4.58111 -86 LTE/9MOBILE 

 

Training and testing of the hybridised CNN-

based pathloss models 

The preprocessed data were separated into 70% 

training data, 15% testing data, and evaluation data 

of 15%, to train the hybridisedCNN-basedpathloss 

architecture developed using the Python code of 

Figure 3. 

Performance metrics 

The performance metrics used in the gauging of the 

hybridised convolutional neural network to study 

the hyperparameters’ impact on pathloss modeling 

for mobile communication systems are mean error, 

absolute mean error, Absolute error, mean squared 

error, and R-squared coefficient of determination. 

Mean error (𝐌error) 

This is the average of the errors spread between the 

measured pathloss values and the predicted path 

loss values. It helps quantify the average amount of 

errors in a set of predicted pathloss values 

(McGrath et al., 2020) and it is as expressed in 

Equation 2. 

Mean  Error(Merror) =  
1

n
× ∑ (Mv − Pv)n

v=0      2  

where 𝑀𝑣and 𝑃𝑣present the measured and predicted 

pathloss values. 

Absolute mean error (𝐀m-error) 

This is the measure of the average magnitude of the 

errors between the predicted path loss values and 

the measured path loss values. It is similar to the 

mean error, but it takes the absolute value of the 

differences, making it always positive (Fabián et 

al., 2021). 

 

The mathematical expression is as expressed in 

equation 3 

(Am-error) =  
1

n
× |∑ (Mv − Pv)n

v=0 |    3 

where n is the number of occurrences, 𝑀𝑣and 𝑃𝑣 

are as defined in equation 2. 

Mean absolute error (MAE)  

This measures the average magnitude of errors in 

path loss predictions, without considering their 

direction. It gives an overview of how much the 

predicted path loss values deviate from the actual 

measured path loss values (Patro and Ranjan, 

2014). 

MAE =  
1

𝑛
∑ ⌈𝑦𝑖 − 𝑦̂𝑖⌉

𝑛
𝑖=1       4 

Where: n is the number of data points, 𝑦𝑖  is the 

actual path loss measured value, 𝑦̂𝑖 is the predicted 

path loss value, and ⌈𝑦𝑖 − 𝑦̂𝑖⌉represents the 

absolute error for each path loss predicted. The 

lower MAE values indicate better model 

performance. It’s easy to interpret as it reflects the 

average error in the same units as the output 

variable. 

Mean squared error (MSE)  

This computes the average squared difference 

between predicted and actual values. It penalises 

larger errors more heavily than MAE due to 

squaring (Heydarianet al., 2022) 

MSE =  
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1       5 

where: n, 𝑦𝑖 , and 𝑦̂𝑖 are as defined in equation 4. 

(𝑦𝑖 − 𝑦̂𝑖)
2 represents the squared error for each 

predicted path loss value. The Lower MSE values 

indicate better predictions. However, it can amplify 

the impact of outliers because errors are squared. 
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 # Import the necessary modules 
from tensorflow.keras.applications import DenseNet121, ResNet50 

from tensorflow.keres import layers, Model 
 

# Build the hybrid CNN model 
def build_hybrid_cnn (): 

 

# Load pre-trained DenseNet and ResNet models 
densenet = DenseNet121 (weights=:’imagenet’, include_top=False, input_shape=(224, 224, 3)) 

resnet = ResNet50(weights=’imagenet’, include_top=False, input_shape=(224, 224, 3)) 
 

#Freeze the base models 
densenet.trainable = False 

resnet.trainable = False 
 

#Image input layer 
Input_image = layers.Input(shape=(224, 224, 3) 

 

#DenseNet and ResNet feature extraction 
densenet_features = densenet (input_image) 

resnet_features = densenet = resnet (input_image) 
 

#Concatenate the features 
Combined_features = layers.Concatenate() ([ 

layers.GlobalAveragePooling2D()(densenet_features), 
layers.GlobalAveragePooling2D()(resnet_features), 

]) 
Figure 3: The Snapshot of the Training and Testing of the hybridised CNN-based pathloss model on Google 

Colaboratory. 

R-squared – coefficient of determination (R²) 

measures how well the model explains the 

variability of the dependent variable. It ranges from 

0 to 1, where 1 indicates a perfect fit, 0 indicates a 

poor fit (Deng et al., 2016; Xu et al., 2020). 

𝑅2 = 1 − 
∑ (𝑦𝑖 −𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

       6 

Where: n, 𝑦𝑖 , and 𝑦̂𝑖 are as defined in equation 4, 𝑦̅ 

is the mean of the actual path loss measured value, 

∑ (𝑦𝑖  − 𝑦̂𝑖)
2𝑛

𝑖=1  is the residual sum of squares, and 

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1  is the total sum of squares. The 

values range between 0 and 1. Where 1 indicates a 

perfect fit, and 0 indicates a poor fit. 

RESULTS AND DISCUSSIONS 

The results depicted in Figure 4 show the 

relationship between the number of Hidden Layers 

and three key performance metrics: Mean Absolute 

Error (MAE), Mean Squared Error (MSE), and R-

squared (R²). At 2 hidden layers, the model 

performs poorly, with high MAE (25.15), high 

MSE (34.43), and a highly negative R² value (-

6.01), indicating that the model is significantly 

underperforming compared to a baseline prediction. 

As the number of hidden layers increases to 10 and 

12, there is a gradual performance improvement. 

The MAE and MSE values decrease, and the R² 

value becomes less negative (-5.3 to -0.1). 

 

Figure 4: The Graphical depiction of the 

HiddenLayer’s tuning with reference to the Model 

Evaluation Metrics. 

This suggests that adding more hidden layers 

improves the model’s ability to learn patterns, 

reducing prediction errors.With 17 hidden layers, 

the model achieves its best performance, with MAE 
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dropping to 2.08 and MSE reducing to 7.35. 

Additionally, the R² value turns positive (0.8), 

indicating that the model now explains a significant 

portion of the variance in the data. 

 

Figure 5: The Graphical depiction of the 

Batch_Size’s tuning with reference to the Model 

Evaluation Metrics 

The graphical depiction of Figure 5 shows the 

relationship between the Batch Size and three key 

performance metrics: Mean Absolute Error (MAE), 

Mean Squared Error (MSE), and R-squared (R²).At 

Batch Size = 2, the model exhibits poor 

performance, with a high MAE (25.15), high MSE 

(34.43), and a highly negative R² value (-6.01). 

This indicates that the model performs significantly 

worse than a simple baseline prediction, suggesting 

inadequate learning due to the small batch size.As 

the Batch Size increases from 4 to 7, the MAE and 

MSE values decrease, and the R² value becomes 

less negative, improving from -5.3 to -1.6. This 

trend suggests that increasing the batch size 

enhances the model’s ability to generalize and 

reduce errors.At Batch Size = 8, the model's 

performance improves significantly. The MAE 

drops to 9.021, the MSE reduces to 18.54, and the 

R² value approaches zero (-0.1), indicating that the 

model is becoming more reliable. When the batch 

size remains at 8, but additional factors (hidden 

layers) likely influence training, the MAE drops 

further to 2.08, the MSE decreases to 7.35, and the 

R² value turns positive (0.8), suggesting an optimal 

configuration for accurate predictions. 

 

Figure 6: The Graphical depiction of the Number 

of epochs tuning with reference to the Model 

Evaluation Metrics 

 

Figure 6 illustrates the relationship between the 

number of training epochs and the model's 

performance. At 50 epochs, the model performs 

poorly, with high MAE (25.15), high MSE (34.43), 

and a highly negative R² value (-6.01). This 

suggests that the model is underfitting the data, 

failing to learn meaningful patterns due to 

insufficient training.As the number of epochs 

increases from 75 to 125, the model shows 

progressive improvement, with MAE and MSE 

decreasing, and the R² value moving closer to zero 

(-5.3 to -1.6). This indicates that more training 

allows the model to refine its predictions and 

capture underlying data patterns better.At 150 

epochs, the MAE and MSE further decrease to 

9.021 and 18.54, respectively, and the R² value 

approaches -0.1, suggesting that the model is 

nearing optimal training.At 200 epochs, the model 

achieves its best performance, with MAE dropping 

to 2.08, MSE reducing to 7.35, and R² becoming 

positive (0.8). This means the model now explains 

a significant portion of the variance in the data, 

indicating a strong predictive capability. 

In Figure 7, the results show that the Training Time 

Per Step remains constant at 549 milliseconds from 

epoch 50 to 150, despite an increase in Batch Size 

from 2 to 8 and variations in the number of Hidden 

Layers. This suggests that increasing the batch size 
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and hidden layers within this range did not 

significantly affect the training time. 

 

Figure 7: The Graphical depiction of the Training 

Step against hyperparameters Values 

 

However, at epoch 200, the Training Time Per Step 

increases to 593 milliseconds. This increase 

coincides with a rise in Hidden Layers from 12 to 

17, while theBatch Size remains constant at 8. This 

suggests that the increase in model complexity due 

to additional hidden layers led to a higher 

computational cost, resulting in a longer training 

time per step. 

CONCLUSION AND RECOMMENDATIONS 

The optimal model configuration is achieved with a 

specific combination of hidden layers, batch size, 

and training epochs, resulting in improved accuracy 

and generalisation. Increasing the number of 

hidden layers enhances the model's performance, 

with a particularly notable improvement observed 

within a certain range. A smaller batch size proves 

effective, balancing error reduction with 

computational efficiency. The model's accuracy 

continues to improve with more training epochs, 

reaching its best performance after enough 

iterations. While moderate increases in batch size 

and hidden layers do not substantially impact 

training time, excessive additions beyond a certain 

threshold lead to increased computational demands. 

Therefore, when designing neural networks for 

similar tasks, it is crucial to focus on optimising 

these parameters: hidden layers, batch size, and 

training epochs to achieve the best performance. 

Ultimately, there must be a careful balance between 

enhancing model complexity and managing 

computational cost, as deeper networks can yield 

better results but may also require more training 

resources. Future research directions should 

investigate other hyperparameters, such as learning 

rate and activation functions, to further improve the 

model's performance. 
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