
Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

180

Impact of Hyperparameter Tuning on Hybridised

Convolutional Neural Networks for Pathloss Modelling in

Mobile Communication Systems

Jimoh A. A., Ojo F. K. and *Adeyemo Z. K.

 Department of Electronic and Electrical Engineering, Faculty of Engineering and Technology, Ladoke Akintola

University of Technology, Ogbomoso.

Article Info ABSTRACT

Article history:

Received: Oct. 18, 2025

Revised: Dec. 22, 2025

Accepted: Jan. 07, 2026

 The performance of machine learning models, particularly Convolutional

Neural Networks (CNNs), is profoundly influenced by effective hyperparameter

tuning. However, a comprehensive understanding of how these hyperparameters

affect the predictive accuracy of CNN-based pathloss models has not been

adequately carried out. This study explores the role of hyper-parameter tuning in

a hybridised CNN architecture that integrates DenseNet121 and ResNet50 to

enhance pathloss prediction in mobile network environments. Field

measurements were conducted along strategically selected urban and suburban

routes in Ilorin, Kwara State, Nigeria. The results revealed the critical influence

of key hyperparameters, such ashidden layers, batch size, training epochs, and

computational efficiency, on model performance. Initially, with only two (2)

hidden layers, the model showed suboptimal predictive accuracy, characterised

by an MAE of 25.15, a MSE of 34.43, and a highly negative R² value of 6.01.

However, increasing the hidden layers to seventeen(17) yielded a substantial

improvement, with the MAE reducing to 2.08, the MSE decreasing to 7.35, and

the R² shifting positively to 0.80. Further analysis of batch sizes revealed that

smaller sizes resulted in poor model performance, increasing it to 8 significantly

enhanced accuracy. Additionally, an increase in training epochs from 50 to 200

led to a marked reduction in prediction errors, albeit at the expense of extended

training time per iteration. These findings underscore the pivotal role of strategic

hyperparameter selection in optimising CNN-based pathloss modelling, offering

valuable insights for enhancing predictive performance in mobile network

systems.

Keywords:

Convolutional Neural

Networks,

Hyperparameters,

Mobile Network

Systems,

Pathloss Modelling

Corresponding Author:
zkadeyemo@lautech.edu

.ng

INTRODUCTION

Pathloss modelling plays a vital role in the

development and optimisation of mobile

communication networks (Abdulkarim et al.,

2022), as accurate pathloss prediction enables

efficient network planning, resource allocation, and

signal coverage estimation (Tushar and Jadon,

2013). Traditional empirical pathloss models, while

widely used, often struggle to adapt to the diverse

and dynamic nature of mobile environments,

limiting their predictive accuracy (Oyelaran et al.,

2024). Machine Learning (ML)-based pathloss

models have appeared as promising alternatives,

exploring the ability of ML to find complex

relationships within input data. In particular, deep

learning approaches such as Convolutional Neural

Networks (CNNs) have demonstrated superior

performance by extracting both linear and

nonlinear features from the input data during

machine training (Al-Hakim and Prasetiyo, 2024).

Unlike conventional empirical models, CNNs can

learn spatial dependencies and generalise better

across varying network conditions. Recent studies

have explored various ML models for pathloss

prediction, including Support Vector Machines,

Random Forest, Extreme Gradient Boosting, and

Transformers (Abdollahzadeh et al., 2024). While

these models offer advantages in different contexts,

they lack the deep feature extraction capabilities

LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

10.36108/laujet/5202.91.0551

Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

181

inherent in CNNs. The CNNs, with their

hierarchical architecture, can process large input

datasets, capturing intricate patterns that influence

signal propagation (Benz et al., 2021). Despite the

promising potential of CNNs, optimising their

performance requires careful tuning of

hyperparameters such as epoch count, batch size,

learning rate, activation functions, and the number

of hidden layers. Understanding how these

hyperparameters affect the predictive accuracy of

CNN-based models remains crucial (Arnold et al.,

2024). This study investigates the impact of hyper-

parameter tuning on a hybridised CNN architecture

combining DenseNet and ResNet to enhance

pathloss prediction in mobile network systems.

However, CNNs have various architectural

variants, each designed with improved features and

layer structures tailored for specific applications.

The choice of a CNN variant depends on the nature

of the input data, research objectives, and the

intended area of application (Christopher et al.,

2023). For instance, deep learning models,

including CNNs, often encounter the challenge of

vanishing gradients, which can hinder optimal

learning and model convergence (Ahmed et al.,

2024). One of the CNN variants designed to

address this issue is DenseNet, which introduces

densely connected layers that enhance gradient

flow and improve feature propagation. DenseNet’s

architecture mitigates the vanishing gradient

problem by establishing direct connections between

layers, facilitating efficient learning and parameter

optimization (Hasan et al., 2021). This design is

particularly helpful for deep networks that require

complex feature extraction without gradient decay.

However, to further enhance feature reuse and

model stability, integrating DenseNet with

ResNet’s residual blocks, which are thoughtfully

incorporated to complement DenseNet by

preserving essential features and mitigating

gradient vanishing through shortcut connections

(Gao et al., 2022). This hybridisation improves

predictive performance, making it well-suited for

pathloss modelling and other deep learning tasks

requiring robust feature extraction. Proper tuning of

hyperparameters, such as learning rate and

activation functions, further ensures efficient model

convergence (Belete and Huchaiah, 2022). This

research therefore hybridised the variants of

DenseNet121 and ResNet50of CNNs, where the

residual network connection in the ResNet50 layers

allows a feature reuse capability for the hybridised

architecture to mitigate any gradient that may

vanish during training while sustaining the deep

learning requirements for excellent feature

extraction. The performance of this new hybridised

architecture requirescareful tuning of the

hyperparameters, including epoch count, batch size,

learning rate, activation functions, and the number

of hidden layers. The impact of these

hyperparameters on the learning dynamics and

predictive accuracy of CNN-based pathloss models

is still an area of active research.This

study,therefore,aims to assess the influence of

hyperparameter tuning on the performance of a

hybridised CNN model combining DenseNet121

and ResNet50 for pathloss prediction by

systematically evaluating the hyperparameter

configurations. The study looks to provide insights

into optimizing CNN-based pathloss models for

improved prediction accuracy and generalization in

diverse mobile network environments.The

remaining section in this article isorganised as

follows: Section 2 presents the Evolution of hyper-

parameter tuning in machine learning, while

Section 3 presents the methodology. In section 4,

the results and discussions were presented. Section

5 concludes the article and then presents the

recommendations.

Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

182

EVOLUTION OF HYPERPARAMETER

TUNING IN MACHINE LEARNING

The development of hyperparameter tuning

strategies has evolved alongside advancements in

Machine Learning (ML) architectures and

computational techniques. Between the 1950s and

1980s, we had the foundation of ML algorithms,

including perceptrons (Weerts et al., 2020) and

early decision tree models, which relied on

manually defined hyperparameters with limited

computational resources. However,the models were

small, and tuning was primarily heuristic-based.

With the resurgence of neural networks in the

1990s, backpropagation became a critical

development, requiring careful selection of learning

rates and weight initialisation strategies to avoid

vanishing gradients(Halbouni et al., 2022).

Gradient descent-based optimisation methods like

stochastic gradient descent (SGD) were manually

tuned using fixed learning rates and batch

sizes.However, the early 2000s saw the

introduction of hyperparameter search techniques,

moving beyond manual choice. Grid search

emerged as a systematic approach, iterating over

predefined hyperparameter values (Belete and

Huchaiah, 2022). Random search followed,

offering better efficiency by sampling from a

hyperparameter space rather than exhaustively

searching every combination (Arafat et al., 2024).

In furtherance, Bayesian optimisation improved

search efficiency by modelling the objective

function and selecting promising hyperparameter

values iteratively (Gao et al., 2022). During this

period, adaptive optimisers such as AdaGrad,

RMSprop, and Adam optimiserrevolutionised

tuning by dynamically adjusting learning rates,

improving convergence and generalization (Ng and

Ghahfarokhi, 2022). Between2015 and 2020,when

CNNs gained prominence in image recognition and

complex pattern learning, hyperparameter tuning

focused on depth, kernel size, activation functions,

and dropout rates (Ennibras et al., 2024).

ResNet50, for instance, introduced skip

connections to mitigate vanishing gradients,

reducing the need for excessive hyperparameter

tuning,which further enhanced feature reuse with

densely connected layers, DenseNet121, requiring

adjustments in learning rate schedules and batch

sizes. Recently, advancements have used

automated hyperparameter tuning through Neural

Architecture Search (NAS) and AutoML

frameworks. Google's NASNet and EfficientNet

demonstrated that Artificial Intelligence (AI)-

driven hyperparameter search could optimise CNN

architectures beyond human-designed models (

Ahmed et al., 2024; El-Maksoud et al., 2021).

Transformer-based models, such as Vision

Transformers (ViTs), introduced novel tuning

challenges, including sequence length and attention

head optimization (Maurício et al., 2023).The trend

towards higher-frequency neural networks, larger

datasets, and self-optimising ML architectures

suggests an increasing reliance on deep learning-

based hyperparameter tuning, meta-learning, and

federated optimisation strategies (Ethier and

Châteauvert, 2024). However, there is a significant

research gap in understanding the specific impact

of hyperparameter tuning on the architectural

structure of complex CNN models, particularly

hybridised architectures that integrate multiple

CNN variants. Existing studies have largely

focused on either individual CNN architectures or

general tuning techniques without a comprehensive

analysis of how hyperparameter adjustments

influence hybrid models' learning efficiency,

convergence rate, and generalisation

performance.This study, therefore, bridges this gap

by systematically analysing the effects of

hyperparameter tuning on a hybridised CNN

architecture combining DenseNet121 and

ResNet50. The key contributions of this research

are as follows:

Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

183

o It examines the impact of key

hyperparameters, including epoch size, batch

size, learning rate, activation functions, and the

number of hidden layers, on hybridised CNN

models.

o It optimises strategies for hybridised CNNs

through the study of optimised hyperparameter

configurations that enhance convergence

speed, reduce overfitting, and improve pathloss

prediction accuracy.

o Benchmarking of the hybridised CNN-based

pathloss model’s performance. This

researchsets upempirical insights into the

effectiveness of hyperparameter tuning for

complex deep learning frameworks.

METHODOLOGY

The systematic approach adopted for the research

in the hyperparameters impact analyses on a

hybridised CNN-based pathloss prediction model

through deep learning techniques encompasses data

collection, preprocessing, training, testing, and

evaluation of the developed hybridised CNN-based

pathloss model.

The development of the hybridised model

The model was developed using the libraries and

tools for ML, such as scikit-learn and TensorFlow,

which are open-source tools on Jupiter Notebook

on Google Colaboratory. The architectural

structural layers of DenseNet121 and ResNet50

variants of CNN were hybridised through layer

compilation and compression as depicted in the

flow chart of Figure 1.

Data acquisition

The following procedures were taken for the field

measurement of the input data through a drive test.

i. Four measurement routes of GRA – Unilorin,

Taiwo – Airport – Otte, Post Office - ARMTI,

and Emir Palace - KWASU routes were

chatted to cover urban and suburban areas of

Ilorin, where all the mobile Base Transceiver

Station (BTS) of MTN, Glo, Airtel, and

9Mobile are actively present.

ii. A test drive was done to study human activities

and vehicle movement along each route, and

an average speed of 40km/hr. It was adopted

for the drive test to mitigate the effect of

Doppler on the field measurement data.

iii. RantCell Professional version was installed on

anInfinix Hot30 mobile phone with an

interface as shown in Figure 2. The Global

Positioning System for the mobile phone was

enabled, and each mobile network's Serial

Identification Module (SIM) was sequentially

enabled for the drive test along each of the four

measurement routes

iv. Mobile signal pathloss values, altitude,

latitude, longitude, and satellite images of the

measurement points were measured and

captured.

Data Preprocessing

The field measurement data were preprocessed

using a Microsoft Excel sheet, where outliers in the

field data were sorted and filtered, and the data

were divided into training data, testing data, and

evaluation data. The spherical law of Cosine

model, expressed by (Van-Brummelen, 2013) in

Equation 1, was used to determine the Radial

Distance 𝑅𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of each measurement point

from the reference BTS, with information in Table

1 for each route.

𝑅𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑘𝑚) = 𝐴𝑐𝑜𝑠 ((𝑐𝑜𝑠(∅1)𝑐𝑜𝑠(∅2) +

𝑠𝑖𝑛(∅1)𝑠𝑖𝑛(∆𝜆) ∗ 𝑐𝑜𝑠𝐸𝑅)) 1

Where ∅1 and ∅2 are the latitude and longitude of

the reference BTS, ∆𝜆 is the change in longitude of

each measurement point, and 𝐸𝑅 is the Earth's

radius in km. This model delivers high-precision

results with 15 significant figures, enabling

accurate calculations for distances as small as

approximately 1 meter.

Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

184

Figure 1: The Flow Chart of the hybridised CNN-based pathloss Model’s Architectural Structure.

Figure 2: The RantCell Logger Interface and Field Measurement setup.

Table 1: The summary of Reference BTS for the four measurement routes

Routes Altitude Latitude Longitude RSRP(dB) Net-Data/Type

GRA-Unilorin 299 8.48513 4.56636 -74 LTE/MTN

Post-office-Armti 340 8.45223 4.58196 -80 EDGE/MTN

Taiwo-Otte 284 8.49952 4.56169 -50 HSPA+/MTN

Emir-Kwasu 248 8.49379 4.56680 -75 HSPA+/MTN

Routes Altitude Latitude Longitude RSRP(dB) Net- Data/Type

GRA-Unilorin 302 8.49997 4.57865 -64 LTE/GLO

Post-office-Armti 334 8.45302 4.58098 -61 LTE/GLO

Taiwo-Otte 340 8.44737 4.50745 -91 LTE/GLO

Emir-Kwasu 278 8.49361 4.56689 -73 LTE/GLO

Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

185

Routes Altitude Latitude Longitude RSRP(dB) Net-Data/Type

GRA-Unilorin 287 8.48887 4.56586 -69 LTE/AIRTEL

Post-office-Armti 288 8.49901 4.57336 -75 LTE/AIRTEL

Taiwo-Otte 294 8.43722 4.49921 -75 LTE/AIRTEL

Emir-Kwasu 323 8.43732 4.49925 -76 LTE/AIRTEL

Routes Altitude Latitude Longitude RSRP (dB) Net-Data/Type

GRA-Unilorin 286 8.48524 4.56606 -76 LTE/9MOBILE

Post-office-Armti 330 8.45316 4.56606 -86 LTE/9MOBILE

Taiwo-Otte 290 8.48381 4.55826 -87 LTE/9MOBILE

Emir-Kwasu 330 8.45316 4.58111 -86 LTE/9MOBILE

Training and testing of the hybridised CNN-

based pathloss models

The preprocessed data were separated into 70%

training data, 15% testing data, and evaluation data

of 15%, to train the hybridisedCNN-basedpathloss

architecture developed using the Python code of

Figure 3.

Performance metrics

The performance metrics used in the gauging of the

hybridised convolutional neural network to study

the hyperparameters’ impact on pathloss modeling

for mobile communication systems are mean error,

absolute mean error, Absolute error, mean squared

error, and R-squared coefficient of determination.

Mean error (𝐌error)

This is the average of the errors spread between the

measured pathloss values and the predicted path

loss values. It helps quantify the average amount of

errors in a set of predicted pathloss values

(McGrath et al., 2020) and it is as expressed in

Equation 2.

Mean Error(Merror) =
1

n
× ∑ (Mv − Pv)n

v=0 2

where 𝑀𝑣and 𝑃𝑣present the measured and predicted

pathloss values.

Absolute mean error (𝐀m-error)

This is the measure of the average magnitude of the

errors between the predicted path loss values and

the measured path loss values. It is similar to the

mean error, but it takes the absolute value of the

differences, making it always positive (Fabián et

al., 2021).

The mathematical expression is as expressed in

equation 3

(Am-error) =
1

n
× |∑ (Mv − Pv)n

v=0 | 3

where n is the number of occurrences, 𝑀𝑣and 𝑃𝑣

are as defined in equation 2.

Mean absolute error (MAE)

This measures the average magnitude of errors in

path loss predictions, without considering their

direction. It gives an overview of how much the

predicted path loss values deviate from the actual

measured path loss values (Patro and Ranjan,

2014).

MAE =
1

𝑛
∑ ⌈𝑦𝑖 − 𝑦̂𝑖⌉

𝑛
𝑖=1 4

Where: n is the number of data points, 𝑦𝑖 is the

actual path loss measured value, 𝑦̂𝑖 is the predicted

path loss value, and ⌈𝑦𝑖 − 𝑦̂𝑖⌉represents the

absolute error for each path loss predicted. The

lower MAE values indicate better model

performance. It’s easy to interpret as it reflects the

average error in the same units as the output

variable.

Mean squared error (MSE)

This computes the average squared difference

between predicted and actual values. It penalises

larger errors more heavily than MAE due to

squaring (Heydarianet al., 2022)

MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1 5

where: n, 𝑦𝑖 , and 𝑦̂𝑖 are as defined in equation 4.

(𝑦𝑖 − 𝑦̂𝑖)
2 represents the squared error for each

predicted path loss value. The Lower MSE values

indicate better predictions. However, it can amplify

the impact of outliers because errors are squared.

Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

186

 # Import the necessary modules
from tensorflow.keras.applications import DenseNet121, ResNet50

from tensorflow.keres import layers, Model

Build the hybrid CNN model
def build_hybrid_cnn ():

Load pre-trained DenseNet and ResNet models
densenet = DenseNet121 (weights=:’imagenet’, include_top=False, input_shape=(224, 224, 3))

resnet = ResNet50(weights=’imagenet’, include_top=False, input_shape=(224, 224, 3))

#Freeze the base models
densenet.trainable = False

resnet.trainable = False

#Image input layer
Input_image = layers.Input(shape=(224, 224, 3)

#DenseNet and ResNet feature extraction
densenet_features = densenet (input_image)

resnet_features = densenet = resnet (input_image)

#Concatenate the features
Combined_features = layers.Concatenate() ([

layers.GlobalAveragePooling2D()(densenet_features),
layers.GlobalAveragePooling2D()(resnet_features),

])
Figure 3: The Snapshot of the Training and Testing of the hybridised CNN-based pathloss model on Google

Colaboratory.

R-squared – coefficient of determination (R²)

measures how well the model explains the

variability of the dependent variable. It ranges from

0 to 1, where 1 indicates a perfect fit, 0 indicates a

poor fit (Deng et al., 2016; Xu et al., 2020).

𝑅2 = 1 −
∑ (𝑦𝑖 −𝑦̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

 6

Where: n, 𝑦𝑖 , and 𝑦̂𝑖 are as defined in equation 4, 𝑦̅

is the mean of the actual path loss measured value,

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1 is the residual sum of squares, and

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1 is the total sum of squares. The

values range between 0 and 1. Where 1 indicates a

perfect fit, and 0 indicates a poor fit.

RESULTS AND DISCUSSIONS

The results depicted in Figure 4 show the

relationship between the number of Hidden Layers

and three key performance metrics: Mean Absolute

Error (MAE), Mean Squared Error (MSE), and R-

squared (R²). At 2 hidden layers, the model

performs poorly, with high MAE (25.15), high

MSE (34.43), and a highly negative R² value (-

6.01), indicating that the model is significantly

underperforming compared to a baseline prediction.

As the number of hidden layers increases to 10 and

12, there is a gradual performance improvement.

The MAE and MSE values decrease, and the R²

value becomes less negative (-5.3 to -0.1).

Figure 4: The Graphical depiction of the

HiddenLayer’s tuning with reference to the Model

Evaluation Metrics.

This suggests that adding more hidden layers

improves the model’s ability to learn patterns,

reducing prediction errors.With 17 hidden layers,

the model achieves its best performance, with MAE

Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

187

dropping to 2.08 and MSE reducing to 7.35.

Additionally, the R² value turns positive (0.8),

indicating that the model now explains a significant

portion of the variance in the data.

Figure 5: The Graphical depiction of the

Batch_Size’s tuning with reference to the Model

Evaluation Metrics

The graphical depiction of Figure 5 shows the

relationship between the Batch Size and three key

performance metrics: Mean Absolute Error (MAE),

Mean Squared Error (MSE), and R-squared (R²).At

Batch Size = 2, the model exhibits poor

performance, with a high MAE (25.15), high MSE

(34.43), and a highly negative R² value (-6.01).

This indicates that the model performs significantly

worse than a simple baseline prediction, suggesting

inadequate learning due to the small batch size.As

the Batch Size increases from 4 to 7, the MAE and

MSE values decrease, and the R² value becomes

less negative, improving from -5.3 to -1.6. This

trend suggests that increasing the batch size

enhances the model’s ability to generalize and

reduce errors.At Batch Size = 8, the model's

performance improves significantly. The MAE

drops to 9.021, the MSE reduces to 18.54, and the

R² value approaches zero (-0.1), indicating that the

model is becoming more reliable. When the batch

size remains at 8, but additional factors (hidden

layers) likely influence training, the MAE drops

further to 2.08, the MSE decreases to 7.35, and the

R² value turns positive (0.8), suggesting an optimal

configuration for accurate predictions.

Figure 6: The Graphical depiction of the Number

of epochs tuning with reference to the Model

Evaluation Metrics

Figure 6 illustrates the relationship between the

number of training epochs and the model's

performance. At 50 epochs, the model performs

poorly, with high MAE (25.15), high MSE (34.43),

and a highly negative R² value (-6.01). This

suggests that the model is underfitting the data,

failing to learn meaningful patterns due to

insufficient training.As the number of epochs

increases from 75 to 125, the model shows

progressive improvement, with MAE and MSE

decreasing, and the R² value moving closer to zero

(-5.3 to -1.6). This indicates that more training

allows the model to refine its predictions and

capture underlying data patterns better.At 150

epochs, the MAE and MSE further decrease to

9.021 and 18.54, respectively, and the R² value

approaches -0.1, suggesting that the model is

nearing optimal training.At 200 epochs, the model

achieves its best performance, with MAE dropping

to 2.08, MSE reducing to 7.35, and R² becoming

positive (0.8). This means the model now explains

a significant portion of the variance in the data,

indicating a strong predictive capability.

In Figure 7, the results show that the Training Time

Per Step remains constant at 549 milliseconds from

epoch 50 to 150, despite an increase in Batch Size

from 2 to 8 and variations in the number of Hidden

Layers. This suggests that increasing the batch size

Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

188

and hidden layers within this range did not

significantly affect the training time.

Figure 7: The Graphical depiction of the Training

Step against hyperparameters Values

However, at epoch 200, the Training Time Per Step

increases to 593 milliseconds. This increase

coincides with a rise in Hidden Layers from 12 to

17, while theBatch Size remains constant at 8. This

suggests that the increase in model complexity due

to additional hidden layers led to a higher

computational cost, resulting in a longer training

time per step.

CONCLUSION AND RECOMMENDATIONS

The optimal model configuration is achieved with a

specific combination of hidden layers, batch size,

and training epochs, resulting in improved accuracy

and generalisation. Increasing the number of

hidden layers enhances the model's performance,

with a particularly notable improvement observed

within a certain range. A smaller batch size proves

effective, balancing error reduction with

computational efficiency. The model's accuracy

continues to improve with more training epochs,

reaching its best performance after enough

iterations. While moderate increases in batch size

and hidden layers do not substantially impact

training time, excessive additions beyond a certain

threshold lead to increased computational demands.

Therefore, when designing neural networks for

similar tasks, it is crucial to focus on optimising

these parameters: hidden layers, batch size, and

training epochs to achieve the best performance.

Ultimately, there must be a careful balance between

enhancing model complexity and managing

computational cost, as deeper networks can yield

better results but may also require more training

resources. Future research directions should

investigate other hyperparameters, such as learning

rate and activation functions, to further improve the

model's performance.

REFERENCES

Abdollahzadeh, B., Khodadadi, N., Barshandeh, S.,

Trojovský, P., Gharehchopogh, F. S., El-

kenawy, E.-S. M., Abualigah, L., and Mirjalili,

S. (2024). Puma optimizer (PO): A novel

metaheuristic optimization algorithm and its

application in machine learning. Cluster

Computing, 27(4), 5235–5283.

https://doi.org/10.1007/s10586-023-04221-5

Abdulkarim, A., Faruk, N., Alozie, E., Sowande,

Olugbenga. A., Olayinka, I.-F. Y., Usman, A.

D., Adewole, K. S., Oloyede, A. A., Chiroma,

H., Garba, S., Imoize, A. L., Musa, A., and

Taura, L. S. (2022). Application of Machine

Learning Algorithms to Path Loss Modeling:

A Review. 2022 5th Information Technology

for Education and Development (ITED), 1–6.

https://doi.org/10.1109/ITED56637.2022.1005

1448

Ahmed, W., Massoud, M., and El-Bouridy, M.

(2024). Optimizing Mri-Based Medical

Diagnosis: Comparative Analysis of

Efficientnet Performance with varying

Learning Rates. Journal of the Egyptian

Society of Tribology, 21(2), 105–119.

https://doi.org/10.21608/jest.2024.278570.108

5

Al Hakim, M. F., and Prasetiyo, B. (2024). CNN-

ML Stacking for better Classification of Rice

Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

189

Leaf Diseases. 2024 IEEE International

Conference on Artificial Intelligence and

Mechatronics Systems (AIMS), 1–5.

https://doi.org/10.1109/AIMS61812.2024.1051

2454.

Arafat, M. Y., Hossain, M. J., and Alam, M. M.

(2024). Machine learning scopes on microgrid

predictive maintenance: Potential frameworks,

challenges, and prospects. Renewable and

Sustainable Energy Reviews, 190, 114088.

https://doi.org/10.1016/j.rser.2023.114088

Arnold, C., Biedebach, L., Küpfer, A., and

Neunhoeffer, M. (2024). The role of

hyperparameters in machine learning models

and how to tune them. Political Science

Research and Methods, 12(4), 841–848.

https://doi.org/10.1017/psrm.2023.61

Belete, D. M., and Huchaiah, M. D. (2022). Grid

search in hyperparameter optimization of

machine learning models for the prediction of

HIV/AIDS test results. International Journal of

Computers and

Applications.https://www.tandfonline.com/doi/

abs/10.1080/1206212X.2021.1974663

Benz, P., Ham, S., Zhang, C., Karjauv, A., and

Kweon, I. S. (2021). Adversarial Robustness

Comparison of Vision Transformer and MLP-

Mixer to CNNs.

https://doi.org/10.48550/ARXIV.2110.02797

Christopher, S. S., Thakur, A. K., Hazra, S. K.,

Sharshir, S. W., Pandey, A. K., Rahman, S.,

Singh, P., Sunder, L. S., Raj, A. K., Dhivagar,

R., and Sathyamurthy, R. (2023). Performance

evaluation of an external compound parabolic

concentrator integrated with a thermal storage

tank for a domestic solar refrigeration system.

Environmental Science and Pollution

Research, 30(22), 62137–62150.

https://doi.org/10.1007/s11356-023-26399-2

Deng, X., Liu, Q., Deng, Y., and Mahadevan, S.

(2016). An improved method to construct a

basic probability assignment based on the

confusion matrix for a classification problem.

Information Sciences, 340–341, 250–261.

El-Maksoud, A. J. A., Ebbed, M., Khalil, A. H.,

and Mostafa, H. (2021). Power Efficient

Design of High-Performance Convolutional

Neural Networks Hardware Accelerator on

FPGA: A Case Study With GoogLeNet. IEEE

Access, 9, 151897–151911.

https://doi.org/10.1109/Access.2021.3126838

Ennibras, F., Aoula, E.-S., and Bouihi, B. (2024).

AI in Preventing Dropout in Distance Higher

Education: A Systematic Literature Review.

2024 4th International Conference on

Innovative Research in Applied Science,

Engineering and Technology (IRASET), 1–7.

https://doi.org/10.1109/Iraset60544.2024.1054

8954

Ethier, J., and Châteauvert, M. (2024). Machine

Learning-Based Path Loss Modeling With

Simplified Features. IEEE Antennas and

Wireless Propagation Letters, 23(11), 3997–

4001. IEEE Antennas and Wireless

Propagation Letters.

https://doi.org/10.1109/LAWP.2024.3388253

Fabián, Z. (2021). Mean, Mode, or Median? The

Score Mean. Communications in Statistics -

Theory and Methodsfor Engineering

Application50(10), 2360–2370.

Gao, H., Zhong, S., Zhang, W., Igou, T., Berger,

E., Reid, E., Zhao, Y., Lambeth, D., Gan, L.,

Afolabi, M. A., Tong, Z., Lan, G., and Chen,

Y. (2022). Revolutionizing Membrane Design

Using Machine Learning-Bayesian

Jimoh et al/LAUTECH Journal of Engineering and Technology 19 (5) 2025: 180-190

190

Optimization. Environmental Science &

Technology, 56(4), 2572–2581.

https://doi.org/10.1021/acs.est.1c04373

Gao, L., Huang, Y., Zhang, X., Liu, Q., and Chen,

Z. (2022). Prediction of Prospecting Target

Based on ResNet Convolutional Neural

Network. Applied Sciences, 12(22), 11433.

https://doi.org/10.3390/app122211433

Halbouni, A., Gunawan, T. S., Habaebi, M. H.,

Halbouni, M., Kartiwi, M., and Ahmad, R.

(2022). CNN-LSTM: Hybrid Deep Neural

Network for Network Intrusion Detection

System. IEEE Access, 10, 99837–99849.

https://doi.org/10.1109/Access.2022.3206425

Hasan, N., Bao, Y., Shawon, A., and Huang, Y.

(2021). DenseNet Convolutional Neural

Networks Application for Predicting COVID-

19 Using CT Image. SN Computer Science,

2(5), 389. https://doi.org/10.1007/s42979-021-

00782-7

Heydarian, M., Doyle, T. E., and Samavi, R.

(2022). MLCM: Multi-Label Confusion

Matrix. IEEE Access, 10, 19083–19095.

Maurício, J., Domingues, I., and Bernardino, J.

(2023). Comparing Vision Transformers and

Convolutional Neural Networks for Image

Classification: A Literature Review. Applied

Sciences, 13(9), 5521.

https://doi.org/10.3390/app13095521

McGrath, S., Zhao, X., Steele, R., Thombs, B. D.,

Benedetti, A., Levis, B., Riehm, K. E., Saadat,

N., Levis, A. W., Azar, M., Rice, D. B., Sun,

Y., Krishnan, A., He, C., Wu, Y., Bhandari, P.

M., Neupane, D., Imran, M. and Zhang, Y.

(2020). Estimating the sample mean and

standard deviation from commonly reported

quantiles in meta-analysis. Statistical Methods

in Medical Research, 29(9), 2520–2537.

Ng, C. S. W., and Jahanbani Ghahfarokhi, A.

(2022). Adaptive Proxy-based Robust

Production Optimization with Multilayer

Perceptron. Applied Computing and

Geosciences, 16, 100103.

https://doi.org/10.1016/j.acags.2022.100103

Oyelaran, O. P., Adeyemo, Z. K., Ojo, S. I., &

Ojedokun, I. A. (2024). Empirical Mode

Decomposition-Based Amplify and Forward

Technique for Cooperative Cognitive Radio

System. ABUAD Journal of Engineering

Research and Development (AJERD), 7(2),

455–466.

https://doi.org/10.53982/ajerd.2024.0702.43-j

Patro, V. M. and Ranjan P. M. (2014). Augmenting

Weighted Average with Confusion Matrix to

Enhance Classification Accuracy. Transactions

on Machine Learning and Artificial

Intelligence, 2(4). 34 - 38.

Tushar Saxena and Jadon J. S. (2013). Review on

2G, 3 G, and 4G Radio Network Planning.

International Journal of Engineering, Business

and Enterprise Application, 6(1), 84–89.

Van Brummelen, G. (2013). Heavenly

mathematics: The forgotten art of spherical

trigonometry. Princeton University Press.

Weerts, H. J. P., Mueller, A. C., and Vanschoren, J.

(2020). Importance of Tuning

Hyperparameters of Machine Learning

Algorithms (Version 1). arXiv.

https://doi.org/10.48550/ARXIV.2007.07588

Xu J., Zhang Y., and Miao D. (2020). Three-way

confusion matrix for classification: A measure-

driven view. Information Sciences and

Technology Systems (IS), 5(7), 772 – 794.

