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The performance of machine learning models, particularly Convolutional
Neural Networks (CNNs), is profoundly influenced by effective hyperparameter
tuning. However, a comprehensive understanding of how these hyperparameters
affect the predictive accuracy of CNN-based pathloss models has not been
adequately carried out. This study explores the role of hyper-parameter tuning in
a hybridised CNN architecture that integrates DenseNet121 and ResNet50 to
enhance pathloss prediction in mobile network environments. Field
measurements were conducted along strategically selected urban and suburban
routes in llorin, Kwara State, Nigeria. The results revealed the critical influence
of key hyperparameters, such ashidden layers, batch size, training epochs, and
computational efficiency, on model performance. Initially, with only two (2)
hidden layers, the model showed suboptimal predictive accuracy, characterised
by an MAE of 25.15, a MSE of 34.43, and a highly negative R2 value of 6.01.
However, increasing the hidden layers to seventeen(17) yielded a substantial
improvement, with the MAE reducing to 2.08, the MSE decreasing to 7.35, and
the R2 shifting positively to 0.80. Further analysis of batch sizes revealed that
smaller sizes resulted in poor model performance, increasing it to 8 significantly
enhanced accuracy. Additionally, an increase in training epochs from 50 to 200
led to a marked reduction in prediction errors, albeit at the expense of extended
training time per iteration. These findings underscore the pivotal role of strategic
hyperparameter selection in optimising CNN-based pathloss modelling, offering
valuable insights for enhancing predictive performance in mobile network
systems.

INTRODUCTION

relationships within input data. In particular, deep

learning approaches such as Convolutional Neural

Pathloss modelling plays a vital role in the
development and optimisation of mobile
communication networks (Abdulkarim et al.,
2022), as accurate pathloss prediction enables
efficient network planning, resource allocation, and
signal coverage estimation (Tushar and Jadon,
2013). Traditional empirical pathloss models, while
widely used, often struggle to adapt to the diverse
and dynamic nature of mobile environments,
limiting their predictive accuracy (Oyelaran et al.,
2024). Machine Learning (ML)-based pathloss
models have appeared as promising alternatives,

exploring the ability of ML to find complex

Networks (CNNs) have demonstrated superior
performance by extracting both linear and
nonlinear features from the input data during
machine training (Al-Hakim and Prasetiyo, 2024).
Unlike conventional empirical models, CNNs can
learn spatial dependencies and generalise better
across varying network conditions. Recent studies
have explored various ML models for pathloss
prediction, including Support Vector Machines,
Random Forest, Extreme Gradient Boosting, and
Transformers (Abdollahzadeh et al., 2024). While
these models offer advantages in different contexts,

they lack the deep feature extraction capabilities
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inherent in CNNs. The CNNs, with their
hierarchical architecture, can process large input
datasets, capturing intricate patterns that influence
signal propagation (Benz et al., 2021). Despite the
promising potential of CNNSs, optimising their
performance  requires  careful  tuning  of
hyperparameters such as epoch count, batch size,
learning rate, activation functions, and the number
of hidden

hyperparameters affect the predictive accuracy of

layers. Understanding how these
CNN-based models remains crucial (Arnold et al.,
2024). This study investigates the impact of hyper-
parameter tuning on a hybridised CNN architecture
combining DenseNet and ResNet to enhance
pathloss prediction in mobile network systems.
CNNs

variants, each designed with improved features and

However, have various architectural
layer structures tailored for specific applications.
The choice of a CNN variant depends on the nature
of the input data, research objectives, and the
intended area of application (Christopher et al.,
2023).

including CNNs, often encounter the challenge of

For instance, deep learning models,
vanishing gradients, which can hinder optimal
learning and model convergence (Ahmed et al.,
2024). One of the CNN variants designed to
address this issue is DenseNet, which introduces
densely connected layers that enhance gradient
flow and improve feature propagation. DenseNet’s
architecture mitigates the vanishing gradient
problem by establishing direct connections between
layers, facilitating efficient learning and parameter
optimization (Hasan et al., 2021). This design is
particularly helpful for deep networks that require
complex feature extraction without gradient decay.
However, to further enhance feature reuse and
model stability, integrating DenseNet with
ResNet’s residual blocks, which are thoughtfully
incorporated  to

complement DenseNet by

preserving essential features and mitigating

gradient vanishing through shortcut connections
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(Gao et al.,, 2022). This hybridisation improves
predictive performance, making it well-suited for
pathloss modelling and other deep learning tasks
requiring robust feature extraction. Proper tuning of
hyperparameters, such as learning rate and
activation functions, further ensures efficient model
convergence (Belete and Huchaiah, 2022). This
research therefore hybridised the variants of
DenseNet121 and ResNet500f CNNs, where the
residual network connection in the ResNet50 layers
allows a feature reuse capability for the hybridised
architecture to mitigate any gradient that may
vanish during training while sustaining the deep
learning requirements for excellent feature
extraction. The performance of this new hybridised
the

hyperparameters, including epoch count, batch size,

architecture  requirescareful  tuning  of
learning rate, activation functions, and the number
of hidden The

hyperparameters on the learning dynamics and

layers. impact of these
predictive accuracy of CNN-based pathloss models

is still an area of active research.This
study,therefore,aims to assess the influence of
hyperparameter tuning on the performance of a
hybridised CNN model combining DenseNet121
and ResNet50

for pathloss

the

prediction by

systematically evaluating hyperparameter
configurations. The study looks to provide insights
into optimizing CNN-based pathloss models for
improved prediction accuracy and generalization in
diverse  mobile  network  environments.The
remaining section in this article isorganised as
follows: Section 2 presents the Evolution of hyper-
parameter tuning in machine learning, while
Section 3 presents the methodology. In section 4,
the results and discussions were presented. Section
5 concludes the article and then presents the

recommendations.
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EVOLUTION OF HYPERPARAMETER
TUNING IN MACHINE LEARNING

The
strategies has evolved alongside advancements in
(ML)
computational techniques. Between the 1950s and
1980s, we had the foundation of ML algorithms,

development of hyperparameter tuning

Machine  Learning architectures  and

including perceptrons (Weerts et al., 2020) and
early decision tree models, which relied on
manually defined hyperparameters with limited
computational resources. However,the models were
small, and tuning was primarily heuristic-based.
With the resurgence of neural networks in the
1990s,

development, requiring careful selection of learning

backpropagation became a critical
rates and weight initialisation strategies to avoid
2022).

Gradient descent-based optimisation methods like

vanishing gradients(Halbouni et al.,
stochastic gradient descent (SGD) were manually
tuned using fixed learning rates and batch
the early 2000s the
introduction of hyperparameter search techniques,

sizes.However, saw

moving beyond manual choice. Grid search
emerged as a systematic approach, iterating over
predefined hyperparameter values (Belete and
2022).

offering better efficiency by sampling from a

Huchaiah, Random search followed,
hyperparameter space rather than exhaustively
searching every combination (Arafat et al., 2024).
In furtherance, Bayesian optimisation improved
search efficiency by modelling the objective
function and selecting promising hyperparameter
values iteratively (Gao et al., 2022). During this
period, adaptive optimisers such as AdaGrad,
RMSprop,

tuning by dynamically adjusting learning rates,

and Adam optimiserrevolutionised

improving convergence and generalization (Ng and
Ghahfarokhi, 2022). Between2015 and 2020,when
CNNs gained prominence in image recognition and
complex pattern learning, hyperparameter tuning

focused on depth, kernel size, activation functions,
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and dropout rates et al,
ResNet50,

connections

(Ennibras 2024).

for instance, introduced  skip
to mitigate vanishing gradients,
reducing the need for excessive hyperparameter
tuning,which further enhanced feature reuse with
densely connected layers, DenseNet121, requiring
adjustments in learning rate schedules and batch
sizes. Recently, advancements have used
automated hyperparameter tuning through Neural
(NAS) AutoML

frameworks. Google's NASNet and EfficientNet

Architecture  Search and

demonstrated that Artificial Intelligence (Al)-
driven hyperparameter search could optimise CNN
architectures beyond human-designed models (
Ahmed et al., 2024; El-Maksoud et al., 2021).
Transformer-based  models,

such as Vision

Transformers (ViTs), introduced novel tuning
challenges, including sequence length and attention
head optimization (Mauricio et al., 2023).The trend
towards higher-frequency neural networks, larger
datasets, and self-optimising ML architectures
suggests an increasing reliance on deep learning-
based hyperparameter tuning, meta-learning, and
(Ethier

Chateauvert, 2024). However, there is a significant

federated optimisation strategies and
research gap in understanding the specific impact
of hyperparameter tuning on the architectural
structure of complex CNN models, particularly
hybridised architectures that integrate multiple
CNN variants. Existing studies have largely
focused on either individual CNN architectures or
general tuning techniques without a comprehensive
analysis of how hyperparameter adjustments
influence hybrid models' learning efficiency,

convergence rate, and generalisation
performance.This study, therefore, bridges this gap
by systematically analysing the effects of
hyperparameter tuning on a hybridised CNN
DenseNet121

ResNet50. The key contributions of this research

architecture  combining and

are as follows:
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It examines the impact of key
hyperparameters, including epoch size, batch
size, learning rate, activation functions, and the
number of hidden layers, on hybridised CNN
models.

It optimises strategies for hybridised CNNs
through the study of optimised hyperparameter
that

speed, reduce overfitting, and improve pathloss

configurations enhance convergence
prediction accuracy.

Benchmarking of the hybridised CNN-based
This

into the

pathloss model’s performance.

researchsets upempirical insights
effectiveness of hyperparameter tuning for

complex deep learning frameworks.

METHODOLOGY
The systematic approach adopted for the research
in the hyperparameters impact analyses on a
hybridised CNN-based pathloss prediction model
through deep learning techniques encompasses data
collection, preprocessing, training, testing, and
evaluation of the developed hybridised CNN-based
pathloss model.
The development of the hybridised model
The model was developed using the libraries and
tools for ML, such as scikit-learn and TensorFlow,
which are open-source tools on Jupiter Notebook
on Google Colaboratory. The architectural
structural layers of DenseNetl21 and ResNet50
variants of CNN were hybridised through layer
compilation and compression as depicted in the
flow chart of Figure 1.
Data acquisition
The following procedures were taken for the field
measurement of the input data through a drive test.
Four measurement routes of GRA — Unilorin,
Taiwo — Airport — Otte, Post Office - ARMTI,
KWASU routes were

chatted to cover urban and suburban areas of

and Emir Palace -

llorin, where all the mobile Base Transceiver
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Station (BTS) of MTN, Glo, Airtel, and
9Mobile are actively present.

A test drive was done to study human activities
and vehicle movement along each route, and
an average speed of 40km/hr. It was adopted
for the drive test to mitigate the effect of
Doppler on the field measurement data.
RantCell Professional version was installed on
aninfinix Hot30 mobile phone with an
interface as shown in Figure 2. The Global
Positioning System for the mobile phone was
enabled, and each mobile network's Serial
Identification Module (SIM) was sequentially
enabled for the drive test along each of the four
measurement routes

Mobile

latitude, longitude, and satellite images of the

signal pathloss values, altitude,

measurement points were measured and
captured.
Data Preprocessing
The field measurement data were preprocessed
using a Microsoft Excel sheet, where outliers in the
field data were sorted and filtered, and the data
were divided into training data, testing data, and
evaluation data. The spherical law of Cosine
model, expressed by (Van-Brummelen, 2013) in
Equation 1, was used to determine the Radial
Distance  Rpstance Of €ach measurement point
from the reference BTS, with information in Table
1 for each route.
Rpistance (km) = Acos ((cos(®;)cos(®;) +
sin(@,)sin(AR) * cosEg)) 1
Where @, and @, are the latitude and longitude of
the reference BTS, A4 is the change in longitude of
each measurement point, and Ep is the Earth's
radius in km. This model delivers high-precision
results with 15 significant figures, enabling
accurate calculations for distances as small as

approximately 1 meter.
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Figure 1: The Flow Chart of the hybridised CNN-based pathloss Model’s Architectural Structure.

Figure 2: The RantCell Logger Interface and Field Measurement setup.

Table 1: The summary of Reference BTS for the four measurement routes

Routes Altitude Latitude Longitude RSRP(dB) Net-Data/Type
GRA-Unilorin 299 8.48513 4.56636 -74 LTE/MTN
Post-office-Armti 340 8.45223 4.58196 -80 EDGE/MTN
Taiwo-Otte 284 8.49952 4.56169 -50 HSPA+/MTN
Emir-Kwasu 248 8.49379 4.56680 -75 HSPA+/MTN
Routes Altitude Latitude Longitude RSRP(dB) Net- Data/Type
GRA-Unilorin 302 8.49997 4.57865 -64 LTE/GLO
Post-office-Armti 334 8.45302 4.58098 -61 LTE/GLO
Taiwo-Otte 340 8.44737 4.50745 -91 LTE/GLO
Emir-Kwasu 278 8.49361 4.56689 -73 LTE/GLO
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Routes Altitude Latitude Longitude  RSRP(dB) Net-Data/Type
GRA-Unilorin 287 8.48887 4.56586 -69 LTE/AIRTEL
Post-office-Armti 288 8.49901 4.57336 -75 LTE/AIRTEL
Taiwo-Otte 294 8.43722 4.49921 -75 LTE/AIRTEL
Emir-Kwasu 323 8.43732 4.49925 -76 LTE/AIRTEL
Routes Altitude Latitude Longitude RSRP (dB)  Net-Data/Type
GRA-Unilorin 286 8.48524 4.56606 -76 LTE/9MOBILE
Post-office-Armti 330 8.45316 4.56606 -86 LTE/9MOBILE
Taiwo-Otte 290 8.48381 4.55826 -87 LTE/9MOBILE
Emir-Kwasu 330 8.45316 458111 -86 LTE/9MOBILE
The mathematical expression is as expressed in
Training and testing of the hybridised CNN- equation 3
based pathloss models (A error) = %x I¥n_,(M, — P,)| 3

The preprocessed data were separated into 70%
training data, 15% testing data, and evaluation data
of 15%, to train the hybridisedCNN-basedpathloss
architecture developed using the Python code of
Figure 3.

Performance metrics

The performance metrics used in the gauging of the
hybridised convolutional neural network to study
the hyperparameters’ impact on pathloss modeling
for mobile communication systems are mean error,
absolute mean error, Absolute error, mean squared
error, and R-squared coefficient of determination.
Mean error (Mepror)

This is the average of the errors spread between the
measured pathloss values and the predicted path
loss values. It helps quantify the average amount of
errors in a set of predicted pathloss values
(McGrath et al., 2020) and it is as expressed in
Equation 2.

Mean Error(Mg. o) = % XYo_o(M,—PB,) 2

where M,and P,present the measured and predicted
pathloss values.
Absolute mean error (A, oror)
This is the measure of the average magnitude of the
errors between the predicted path loss values and
the measured path loss values. It is similar to the
mean error, but it takes the absolute value of the
differences, making it always positive (Fabian et
al., 2021).
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where n is the number of occurrences, Mvand Pv
are as defined in equation 2.

Mean absolute error (MAE)

This measures the average magnitude of errors in
path loss predictions, without considering their
direction. It gives an overview of how much the
predicted path loss values deviate from the actual
measured path loss values (Patro and Ranjan,
2014).

MAE = 4

% i=1lyi = 9il
Where: n is the number of data points, y; is the
actual path loss measured value, J; is the predicted
path loss value, and [y; — y;]represents the
absolute error for each path loss predicted. The
lower MAE values indicate better model
performance. It’s easy to interpret as it reflects the
average error in the same units as the output
variable.

Mean squared error (MSE)

This computes the average squared difference
between predicted and actual values. It penalises
larger errors more heavily than MAE due to

squaring (Heydarianet al., 2022)
1 ~
MSE = ~¥iL,(vi — 9))°

where: n, y;, and y; are as defined in equation 4.

5

(v; — $:)? represents the squared error for each
predicted path loss value. The Lower MSE values
indicate better predictions. However, it can amplify

the impact of outliers because errors are squared.
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# Import the necessary modules
from tensorflow.keras.applications import DenseNet121, ResNet50
from tensorflow.keres import layers, Model

# Build the hybrid CNN model
def build_hybrid_cnn ():

# Load pre-trained DenseNet and ResNet models
densenet = DenseNet121 (weights=:'imagenet’, include_top=False, input_shape=(224, 224, 3))
resnet = ResNet50(weights="imagenet’, include_top=False, input_shape=(224, 224, 3))

#Freeze the base models
densenet.trainable = False
resnet.trainable = False

#lmage input layer
Input_image = layers.Input(shape=(224, 224, 3)

#DenseNet and ResNet feature extraction
densenet_features = densenet (input_image)
resnet_features = densenet = resnet (input_image)

#Concatenate the features
Combined_features = layers.Concatenate() ([
layers.GlobalAveragePooling2D()(densenet_features),
layers.GlobalAveragePooling2D()(resnet_features),

1)

Figure 3: The Snapshot of the Training and Testing of the hybridised CNN-based pathloss model on Google
Colaboratory.

R-squared — coefficient of determination (R?)

measures how well the model explains the
variability of the dependent variable. It ranges from
0 to 1, where 1 indicates a perfect fit, O indicates a
poor fit (Deng et al., 2016; Xu et al., 2020).

a0 —90*
RZ =1 — &i=1i i
S i-9)? 6

Where: n, y;, and J; are as defined in equation 4, y
is the mean of the actual path loss measured value,
Y .(y; —9)?% is the residual sum of squares, and
Yr.(y; — ¥y)? is the total sum of squares. The
values range between 0 and 1. Where 1 indicates a

perfect fit, and 0 indicates a poor fit.
RESULTS AND DISCUSSIONS

The
relationship between the number of Hidden Layers

results depicted in Figure 4 show the
and three key performance metrics: Mean Absolute
Error (MAE), Mean Squared Error (MSE), and R-
squared (R?). At 2 hidden layers, the model
performs poorly, with high MAE (25.15), high
MSE (34.43), and a highly negative R? value (-
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6.01), indicating that the model is significantly
underperforming compared to a baseline prediction.
As the number of hidden layers increases to 10 and
12, there is a gradual performance improvement.
The MAE and MSE values decrease, and the R?

value becomes less negative (-5.3 to -0.1).

—8— MAE
MSE

[—
20 -

10 4

Model Metrics

Hidden_Layers

Figure 4: The Graphical depiction of the
HiddenLayer’s tuning with reference to the Model
Evaluation Metrics.

This suggests that adding more hidden layers
improves the model’s ability to learn patterns,
reducing prediction errors.With 17 hidden layers,

the model achieves its best performance, with MAE
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dropping to 2.08 and MSE reducing to 7.35.
Additionally, the R2 value turns positive (0.8),
indicating that the model now explains a significant

portion of the variance in the data.

—a— MAE
30 4 . MSE
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Figure 5: The Graphical depiction of the
Batch_Size’s tuning with reference to the Model
Evaluation Metrics

The graphical depiction of Figure 5 shows the
relationship between the Batch Size and three key
performance metrics: Mean Absolute Error (MAE),
Mean Squared Error (MSE), and R-squared (R2).At
Batch Size = 2,
performance, with a high MAE (25.15), high MSE
(34.43), and a highly negative R? value (-6.01).

This indicates that the model performs significantly

the model exhibits poor

worse than a simple baseline prediction, suggesting
inadequate learning due to the small batch size.As
the Batch Size increases from 4 to 7, the MAE and
MSE values decrease, and the R? value becomes
less negative, improving from -5.3 to -1.6. This
trend suggests that increasing the batch size
enhances the model’s ability to generalize and
reduce errors.At Batch Size = 8, the model's
performance improves significantly. The MAE
drops to 9.021, the MSE reduces to 18.54, and the
R2 value approaches zero (-0.1), indicating that the
model is becoming more reliable. When the batch
size remains at 8, but additional factors (hidden
layers) likely influence training, the MAE drops
further to 2.08, the MSE decreases to 7.35, and the
R2 value turns positive (0.8), suggesting an optimal

configuration for accurate predictions.
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—a— MAE
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Figure 6: The Graphical depiction of the Number
of epochs tuning with reference to the Model
Evaluation Metrics

Figure 6 illustrates the relationship between the
number of training epochs and the model's
performance. At 50 epochs, the model performs
poorly, with high MAE (25.15), high MSE (34.43),
and a highly negative Rz value (-6.01). This
suggests that the model is underfitting the data,
failing to learn meaningful patterns due to
insufficient training.As the number of epochs
increases from 75 to 125, the model shows
progressive improvement, with MAE and MSE
decreasing, and the R2 value moving closer to zero
(-5.3 to -1.6). This indicates that more training
allows the model to refine its predictions and
capture underlying data patterns better. At 150
epochs, the MAE and MSE further decrease to
9.021 and 18.54, respectively, and the RZ value
approaches -0.1, suggesting that the model is
nearing optimal training.At 200 epochs, the model
achieves its best performance, with MAE dropping
to 2.08, MSE reducing to 7.35, and R? becoming
positive (0.8). This means the model now explains
a significant portion of the variance in the data,

indicating a strong predictive capability.

In Figure 7, the results show that the Training Time
Per Step remains constant at 549 milliseconds from
epoch 50 to 150, despite an increase in Batch Size
from 2 to 8 and variations in the number of Hidden

Layers. This suggests that increasing the batch size
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and hidden layers within this range did not

significantly affect the training time.

Training_Step against hyper-parameters Values

i 3 3 [ 13 [

& Traineg Time_PerStep  gepoch @ Bach Sze g Hidden Leyers

3

B 8§ 888 B

Figure 7: The Graphical depiction of the Training
Step against hyperparameters Values

However, at epoch 200, the Training Time Per Step
increases to 593 milliseconds. This increase
coincides with a rise in Hidden Layers from 12 to
17, while theBatch Size remains constant at 8. This
suggests that the increase in model complexity due
to additional hidden layers led to a higher
computational cost, resulting in a longer training

time per step.

CONCLUSION AND RECOMMENDATIONS

The optimal model configuration is achieved with a
specific combination of hidden layers, batch size,
and training epochs, resulting in improved accuracy
and generalisation. Increasing the number of
hidden layers enhances the model's performance,
with a particularly notable improvement observed
within a certain range. A smaller batch size proves
effective, balancing error  reduction  with
computational efficiency. The model's accuracy
continues to improve with more training epochs,
reaching its best performance after enough
iterations. While moderate increases in batch size
and hidden layers do not substantially impact
training time, excessive additions beyond a certain
threshold lead to increased computational demands.
Therefore, when designing neural networks for
similar tasks, it is crucial to focus on optimising

these parameters: hidden layers, batch size, and

training epochs to achieve the best performance.
Ultimately, there must be a careful balance between
enhancing model complexity and managing
computational cost, as deeper networks can yield
better results but may also require more training
resources. Future research directions should
investigate other hyperparameters, such as learning
rate and activation functions, to further improve the

model's performance.
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